157 resultados para finite element methods
Resumo:
Objective: to the purpose of this study was to compare the stress distribution in the peri-implant hard tissue on different attachment systems for mandibular or maxillary implant-retained overdentures. Material and methods: the search for published studies was performed on PubMed/Medline database covering the period of January 2000 to April 2014. The selection of the eligible studies was performed according to including and excluding criteria. Results: a total of 140 studies were screened and according to the search strategy, 21 studies were selected for this review. Eight studies perfomed strain-gauge analysis, 5 evaluated the stress distribution though photoelastic test and 7 performed tridimensional finite element analysis. Only one study in vivo was included. Non-splinted O-rings showed better stress distribution than other bar-clip attachment systems. Conclusions: the present study did not find sufficient evidences regarding the most indicated attachment system for overdentures with better stress distribution for the peri-implant hard tissue. The methodologies analyzed should be complemented with other tests and used as a tool for further clinical studies.
Resumo:
Purpose: The aim of this study was to assess the contributions of some prosthetic parameters such as crown-to-implant (C/I) ratio, retention system, restorative material, and occlusal loading on stress concentrations within a single posterior crown supported by a short implant. Materials and Methods: Computer-aided design software was used to create 32 finite element models of an atrophic posterior partially edentulous mandible with a single external-hexagon implant (5 mm wide × 7 mm long) in the first molar region. Finite element analysis software with a convergence analysis of 5% to mesh refinement was used to evaluate the effects of C/I ratio (1:1; 1.5:1; 2:1, or 2.5:1), prosthetic retention system (cemented or screwed), and restorative material (metal-ceramic or all ceramic). The crowns were loaded with simulated normal or traumatic occlusal forces. The maximum principal stress (σmax) for cortical and cancellous bone and von Mises stress (σvM) for the implant and abutment screw were computed and analyzed. The percent contribution of each variable to the stress concentration was calculated from the sum of squares analysis. Results: Traumatic occlusion and a high C/I ratio increased stress concentrations. The C/I ratio was responsible for 11.45% of the total stress in the cortical bone, whereas occlusal loading contributed 70.92% to the total stress in the implant. The retention system contributed 0.91% of the total stress in the cortical bone. The restorative material was responsible for only 0.09% of the total stress in the cancellous bone. Conclusion: Occlusal loading was the most important stress concentration factor in the finite element model of a single posterior crown supported by a short implant.
Resumo:
Objective: the aim of this study was to evaluate the influence of occlusal veneering material in single fixed implant-supported crowns through the 3-D finite element method. Material and methods: Four models were fabricated using the Rhinoceros 4.0, SolidWorks, and InVesalius softwares. Each model represented a block of mandibular bone with an external hexagon implant of 5 mm x 10 mm and different veneering materials including NiCr (1), porcelain (2), composite resin (3), and acrylic resin (4). An axial load of 200 N and an oblique load of 100 N were applied. Results: model (2) with porcelain veneering presented a lower stress concentration for the NiCr framework, followed by the composite resin and acrylic resin. The stress distribution to the implant and bone tissue was similar for all models. Conclusions: there is no difference of stress distribution to the implant and supporting structures by varying the veneering material of a single implant-supported prosthesis.
Resumo:
Objective: the aim of this study was to evaluate the influence of occlusal veneering material in single fixed implant-supported crowns through the 3-D finite element method. Material and methods: Four models were fabricated using the Rhinoceros 4.0, SolidWorks, and InVesalius softwares. Each model represented a block of mandibular bone with an external hexagon implant of 5 mm x 10 mm and different veneering materials including NiCr (1), porcelain (2), composite resin (3), and acrylic resin (4). An axial load of 200 N and an oblique load of 100 N were applied. Results: model (2) with porcelain veneering presented a lower stress concentration for the NiCr framework, followed by the composite resin and acrylic resin. The stress distribution to the implant and bone tissue was similar for all models. Conclusions: there is no difference of stress distribution to the implant and supporting structures by varying the veneering material of a single implant-supported prosthesis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Simulação da suspensão tipo duplo A de um veículo off-road através do histórico de excitação do solo
Resumo:
The search for mechanical components validation methods, employed in product development sector, becomes more avid for less expensive solutions. As a result, programs that can simulate forces acting on a given part through finite element method are gaining more space in the market, once this process consumes less capital when compared to currently-employed empirical validation. This article shows the simulation of an off-road prototype suspension through such technique, using ground excitation history coming from field measurements and also by making use of a specific tool for obtaining dynamic loads from the model in question. The results shown at the end is key for future enhancements aiming mass reduction, for example, that may be executed on the prototype suspension system discussed here
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)