237 resultados para emission properties of surface sites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetrahedral nickel(0) complexes [NiL4], [Ni(dppe)2] and [Ni(CO)2(SbPh3)2] (L=AsPh3, SbPh3, P(OPh)3, dppe=1,2-bis(diphenylphosphino)ethane) were prepared by reduction of NiCl2·6H2O with NaBH4 under N2 or CO atmosphere in the presence of the ligand. The complex [Ni(SbPh3)4] was also obtained by electrolysis at -1.3 V (Ag/Ag+), under a platinum gauze, of the system NiCl2·6H2O/SbPh3 (molar ratio=1:4). These complexes, both in the solid state and in solution, show an orange emission at room temperature, when excited with UV radiation. A qualitative molecular orbital diagram for the [NiL4] complexes is proposed. Electronic absorption spectra of the complexes show bands near 400 nm assigned as MLCT π*2e←d2t2. A 1A1←3T1 transition is suggested for the emission observed in these systems. Lifetimes in microsecond range were estimated from time-resolved emission spectra. Spectroscopic properties of the free ligands have also been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the optical properties of Cr3+ ions in the pseudoternary system InF3-GdF3-GaF3. Linear properties, investigated through absorption and emission spectra, provide information on the crystal field, the frequency, and number of phonons emitted during the absorption to the 4T2 band and the emission to the 4A2 ground state, and the Fano antiresonance line shape in the vicinity of the 4A2→2E transition. A study of the nonlinear refractive index as a function of the wavelength, carried out with the Z-scan technique, provides spectroscopic data about electronic transitions starting from the excited state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-linear electrical properties of CoO-doped and Nb205-doped SnO2 ceramics were characterized. X-ray diffraction and scanning electron microscopy indicated that the system is single phase. The electrical conduction mechanism for low applied electrical field was associated with thermionic emission of the Schottky type. An atomic defect model based on the Schottky double-barrier formation was proposed to explain the origin of the potential barrier at the ceramic grain boundaries. These defects create depletion layers at grain boundaries, favouring electron tunnelling at high values of applied electrical field. © 1998 Chapman & Hall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex crystallization process of a Brazilian blast-furnace slag glass was investigated using differential scanning calorimetry (DSC), X-ray diffraction, optical microscopy, transmission electron microscopy (TEM), selected area diffraction (SAD), energy dispersive spectroscopy (EDS) and micro-Raman spectroscopy. Three crystalline phases (merwinite, melilite and larnite) were identified after heat treatment between Tg (742°C) and the DSC crystallization peak (T = 1000°C). Merwinite was identified as a metastable phase. A small amount (0.004 wt%) of metallic platinum was found in the glass composition. Particles of Pt3Fe, detected by EDS and SAD-TEM, were the starting points of crystallization acting, therefore, as heterogeneous nucleating sites. Only melilite and larnite precipitated in a glass sample heat-treated at 1000°C for 1 h. The flexural strength of this crystallized sample was less than that of the glass, probably due the allotropic phase transformation of larnite. © 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spindle-type iron fine particles have been prepared by reduction of silica-coated-hematite particles. Hydrogen reduction of the coated-hematite cores yielded uniform spindle-type iron particles, which were stabilized by surface oxidation. Narrow particle distributions are observed from TEM measurements. X-ray, Mössbauer and magnetization data are in agreement with the presence of nanosized α-Fe particles, having surface layer of spinel structure oxide. Mössbauer spectra show that the oxide surface is superparamagnetic at room temperature. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheological properties of tin oxide slurries were studied experimentally and theoretically. The deflocculants used were ammonium polyacrilate (PAA) and the copolymer poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB-PVA-PVAc), in water and ethanol, respectively. The amount of deflocculant was optimized for different solid contents by means of viscosity measurements. In spite of the high stability of PVB-dispersed slurries, a high solid concentration was not obtained. On the other hand, a slurry with a 56.4 vol.% of solids was attained when PAA was used. A theoretical study of the adsorption of PAA in its dissociated (basic solution) and non-dissociated (acidic solution) forms on SnO 2 (110) is presented. This analysis was made by means of the PM3 method using a large cluster Sn 15O 28 for the surface model. The calculated adsorption energy is larger for the ionized PAA than for the non-ionized form, indicating that alkaline slurries favor PAA adsorption on the SnO 2 surface. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work was to study the influence of carrageenan level (X 1) and total solids content of yogurt/whey mixture (X 2) on starter culture fermentation time, physicochetnical properties (pH, fat and total solids contents) and rheological characteristics of lactic beverages using response surface methodology. The physicochemical characteristics of the lactic beverages were similar to those of commercial products. All beverages showed non-Newtonian fluid behavior with thixotropy and yield stress. The total solids content of the lactic beverages had a greater influence on the rheological behavior of these products than the carrageenan level. Wide ranges of consistency measurements were observed by varying the stabilizer level and total solids content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminum matrix composites are currently considered as promising materials for tribological applications in the automotive, aircraft and aerospace industries due to their great advantage of a high strength-to-weight ratio. A superior combination of surface and bulk mechanical properties can be attained if these composites are processed as functionally graded materials (FGM's). In this work, homogeneous aluminum based matrix composite, cast by gravity, and aluminum composites with functionally graded properties, obtained by centrifugal cast, are tested against nodular cast iron in a pin-on-disc tribometer. Three different volume fractions of SiC reinforcing particles in each FGM were considered in order to evaluate their friction and wear properties. The sliding experiments were conducted without lubrication, at room temperature, under a normal load of 5 N and constant sliding speed of 0.5 ms-1. The worn surfaces as well as the wear debris were characterized by SEM/EDS and by atomic force microscopy (AFM). The friction coefficient revealed a slightly decrease (from 0.60 to 0.50) when FGM's are involved in the contact instead of the homogeneous composite. Relatively low values of the wear coefficient were obtained for functionally graded aluminum matrix composites (≈10-6 mm3N-1 m-1), which exhibited superior wear resistance than the homogeneous composite and the opposing cast iron surface. Characterization of worn surfaces indicated that the combined effect of reinforcing particles as load bearing elements and the formation of protective adherent iron-rich tribolayers has a decisive role on the friction and wear properties of aluminum matrix composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface-relief gratings are photoinscribed on ionically adsorbed layer-by-layer (LBL) films of an azodye, Brilliant Yellow (BY), which was layered alternately with a polyelectrolyte. Photoinscription is performed by impinging an interference pattern of p- or s-polarized laser light with moderate intensity onto the LBL film, which is unlikely to cause thermal effects. Large-scale mass transport occurs due to the force associated with the field gradient of the light pattern. The ionic interactions between adjacent layers appear to provide the means for the chromophores to drag the polymer chains upon photoizomerization. LBL films were produced from two different polyelectrolytes and under two distinct pH values leading to markedly different film properties especially concerning photodegradation. Exposure to the laser light, for instance, leads to higher photodegradation in the poly(dimethyl diallylammonium chloride)/BY system, in comparison to the poly(allylamine hydrochloride)/BY films. Mass transport in the latter case is predominantly light-driven, which is consistent with the higher amplitude of modulation for p-polarized light (70 nm) compared to that caused by s-polarized light (18 nm). © 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical absorption and fluorescence were investigated in Tm3+ doped fluoroindate glass. The spectroscopic parameters for transitions in the 4f11 configuration were determined. The fluorescence study revealed the origin of the frequency upconversion process as well as allowed to quantify the interaction between Tm3+ ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lead zirconate titanate (PZT) solutions were prepared using a polymeric precursor method, Zr n-propoxide and Ti i-propoxide were used as starting materials with ethylene glycol and water as solvents. The PZT solution was spin-coated on Pt/Ti/SiO2/Si substrates, baked on a hot plate, and finally heat-treated in a tube furnace between 400 and 800°C. The surface morphology and grain size of the films were characterized by atomic force microscopy (AFM), using a tapping mode with amplitude modulation. The films, thermal annealed at temperatures higher than 500°C, exhibited a dense microstructure, without noticeable cracks or voids. Electrical properties were investigated as a function of composition and annealing temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study tested the hypothesis that the tribochemical silica coating on ceramic surfaces increases the bond strength of resin cement to a glass-infiltrated zirconium-based ceramic. Materials and Methods: Fifteen blocks of In-Ceram Zirconia from CEREC InLab (5 per group) and 15 composite blocks (Z-250) 5 mm x 5 mm x 4 mm were made. The ceramic surfaces were polished, and the blocks were divided into three groups: (1) airborne abrasion with 110-μm aluminum oxide particles; (2) Rocatec system, tribochemical silica coating; and (3) CoJet system, tribochemical silica coating. The ceramic blocks were cemented to the composite blocks using Panavia F according to the manufacturer's specifications. All samples were stored in 37°C distilled water for 7 days and later sectioned in two axes using a diamond disk under cooling to obtain specimens with a cross-sectional area of approximately 1 mm2 (n = 45). Each specimen was then attached with cyanoacrylate glue to an adapted device for the microtensile test, which was carried out on a universal testing machine. Results: The results were subjected to ANOVA and Tukey's test. Group 2 (23.0 ± 6.7 MPa) and group 3 (26.8 ± 7.4 MPa) showed greater bond strength than group 1 (15.1 ± 5.3 MPa). There was no significant difference between groups 2 and 3. All failures were in the adhesive zone. Conclusion: The hypothesis was confirmed - the tribochemical systems increased the bond strength between Panavia F and In-Ceram Zirconia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compaction rate, the relation between the density of the wood panel and the density of the wood used for producing the particles, is an indicator of the product's densification. Among the various types of wood panels, particleboards are widely employed in the lumber industry, mainly for the furniture production. This paper presents a study of the relation between the compaction rate and the properties of tensile strength perpendicular to surface, Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) obtained from a static bending test, thickness swelling and water absorption (2 and 24 hours). These properties were calculated according to the Brazilian ABNT, NBR 14810 standard. Particleboards were produced using the species Pinus elliotti and adhesive ureaformaldehyde. The relation was established by a multiple linear regression, and the most appropriate statistical models were determined. The estimated models indicate statistically significant effects of water absorption in 2 hours and MOR in the particleboards' compaction rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Thirty blocks (5×5×4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VITA) were fabricated according to the manufacturer's instructions and duplicated in resin composite. The specimens were polished and assigned to one of the following three treatment conditions (n=10): (1) Airborne particle abrasion with 110 μm Al2O3 particles + silanization, (2) Silica coating with 110 μm SiOx particles (Rocatec Pre and Plus, 3M ESPE) + silanization, (3) Silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. The ceramic-composite blocks were cemented with the resin cement (Panavia F) and stored at 37 °C in distilled water for 7 days prior to bond tests. The blocks were cut under coolant water to produce bar specimens with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (cross-head speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using ANOVA and Tukey's test (α≤0.05). Silica coating with silanization either using 110 μm SiOx or 30 μm SiOx particles increased the bond strength of the resin cement (24.6±2.7 MPa and 26.7±2.4 MPa, respectively) to the zirconia-based ceramic significantly compared to that of airborne particle abrasion with 110-μm Al2O3 (20.5±3.8 MPa) (ANOVA, P<0.05). Conditioning the INC-ZR ceramic surfaces with silica coating and silanization using either chairside or laboratory devices provided higher bond strengths of the resin cement than with airborne particle abrasion using 110 μm Al2O3. © 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectroscopic properties of ytterbium-doped tellurile glasses with different compositions are reported. Results of linear refractive index, absorption and emission spectra, and fluorescence lifetimes are presented. The studied samples present high refractive index (∼2.0) and large transmission window (380-6000nm). Absorption and emission cross-sections are calculated as well as the minimum pump laser intensity. The results are compared with the values of other laser materials, in order to investigate applications as laser media in the infrared region.