161 resultados para electric conductivity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceramic samples of SrBi2(Nb1-xTax)O-9 (0 less than or equal to x less than or equal to 1) were prepared by the solid state reaction method in order to investigate their structural and electrical features as well as obtain useful information to improve the properties of SrBi2(Nb1-xTax)O-9 as a thin film. The X-ray diffraction patterns and the scanning electronic microscopy photomicrographs show no secondary phases but the formation of a solid-state solution for all the composition. The ac conductivity of the samples, measured at 25 degreesC and 100 kHz frequency, decreases with the increase of Ta content. Such results were explained by intrinsic conductivity of pure components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrical properties of the grain boundary region of electroceramic sensor temperature based on inverse spinel Zn7Sb2O12 were investigated at high temperature. The zinc antimoniate was synthesized by a chemical route based on the modified Pechini method. The electric properties of Zn7Sb2O12 were investigated by impedance spectroscopy in the frequency range from 5 Hz to 13 MHz and from 250 up to 600 degreesC. The grain boundary conductivity follows the Arrhenius law, with two linear branches of different slopes. These branches exhibit activation energies with very similar values; the low-temperature (less than or equal to350 degreesC) and high-temperature (greater than or equal to400 degreesC) regions are equal to 1.15 and 1.16 eV, respectively. Dissimilar behavior is observed on the relaxation time (tau) curve as a function of temperature, where a single slope is identified. The negative temperature coefficient parameters and nature of the polarization phenomenon of the grain boundary are discussed. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conductivity behavior of the Bi12TiO20 single crystal was investigated by the electric modulus spectroscopy, which was carried out in the frequency range from 5 Hz to 13 MHz and at temperatures higher than 400 degrees C. The resistance curve exhibits a set of properties correlated to a negative temperature coefficient thermistor. In the temperature range investigated, the characteristic parameter (,8) of the thermistor is equal to 4834 degrees C. Temperature coefficients of the resistance (a) were derived being equal to -3.02 x 10(-2) degrees C-1 at 400 degrees C and equal to -9.86 x 10(-3) degrees C-1 at 700 degrees C. The nature of the electric relaxation phenomenon and magnitude dc conductivity are approached. (c) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, the ionic conductivity and the dielectric relaxation properties on the poly(vinyl alcohol)-CF(3)COONH(4) polymer system have been investigated by means of impedance spectroscopy measurements over wide ranges of frequencies and temperatures. The electrolyte samples were prepared by solution casting technique. The temperature dependence of the sample's conductivity was modeled by Arrhenius and Vogel-Tammann-Fulcher (VTF) equations. The highest conductivity of the electrolyte of 3.41x10 (-aEuro parts per thousand 3) (Omega cm) (-aEuro parts per thousand 1) was obtained at 423 K. For these polymer system two relaxation processes are revealed in the frequency range and temperature interval of the measurements. One is the glass transition relaxation (alpha-relaxation) of the amorphous region at about 353 K and the other is the relaxation associated with the crystalline region at about 423 K. Dielectric relaxation has been studied using the complex electric modulus formalism. It has been observed that the conductivity relaxation in this polymer system is highly non-exponential. From the electric modulus formalism, it is concluded that the electrical relaxation mechanism is independent of temperature for the two relaxation processes, but is dependent on composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements of 1H Nuclear Magnetic Resonance (NMR) relaxation times, Electron Paramagnetic Resonance (EPR) and AC Impedance Spectroscopy (IS) are reported for composites based on PEO8:LiClO4 and carbon black (CB), prepared by two methods: solvent and fusion processing. Three nuclear relaxation processes were identified for 1H nuclei: (i) belonging to the polymer chains in the amorphous phase, loosely bound to the CB particles, whose dynamics is almost the same as for unfilled polymer, (ii) belonging to the polymer chains which are tightly attached to the CB particles, and (iii) belonging to the crystalline phase in the loose polymer chain. The paramagnetic electronic susceptibility of the composite samples, measured by EPR, was interpreted by assuming a contribution of localized spin states that follow a Curie law, and a Pauli-like contribution of delocalized spins. A significant change of the EPR linewidth was observed at 40 K, which is the temperature where the Curie and Pauli susceptibilities equally contribute to the paramagnetic electronic susceptibility. The electrical properties are very sensitive to the preparation methods of the composites, which conditions the interaction between carbon particle-carbon particle and carbon particle-polymer chain. Classical statistic models to describe the conductivity in these media were not satisfactory. © 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of undoped and Sb-doped SnO2 have been prepared by a sol-gel dip-coating technique. For the high doping level (2-3 mol% Sb) n-type degenerate conduction is expected, however, measurements of resistance as a function of temperature show that doped samples exhibit strong electron trapping, with capture levels at 39 and 81 meV. Heating in a vacuum and irradiation with UV monochromatic light (305 nm) improve the electrical characteristics, decreasing the carrier capture at low temperature. This suggests an oxygen related level, which can be eliminated by a photodesorption process. Absorption spectral dependence indicates an indirect bandgap transition with Eg ≅ 3.5 eV. Current-voltage characteristics indicate a thermionic emission mechanism through interfacial states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite films made of lead zirconate titanate ceramic particles coated with polyaniline and poly(vinylidene fluoride) - PZT-PAni/PVDF were produced by hot pressing the powder mixtures in the desired ceramic volume fraction. The ceramic particles were coated during the polyaniline synthesis and the conductivity of the conductor polymer was controlled by different degrees of protonation. Composites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ac and dc electrical measurements, the longitudinal d33 piezo coefficient and the photopyroelectric response. Results showed that the presence of PAni increased the dielectric permittivity of the composite and allowed better efficiency in the poling process, which increased the piezo- and pyroelectric activities of the composite film and reduced both the poling time and the poling electric field. The thermal sensing of the material was also analyzed, showing that this composite can be used as pyroelectric sensor. © 2013 IOP Publishing Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide a simple method for writing the Dirac-Born-Infeld equations of a Dp-brane in an arbitrary static background whose metric depends only on the holographic radial coordinate z. Using this method we revisit the Karch-O'Bannon procedure to calculate the dc conductivity in the presence of constant electric and magnetic fields for backgrounds where the boundary is four- or three-dimensional and satisfies homogeneity and isotropy. We find a frame-independent expression for the dc conductivity tensor. For particular backgrounds we recover previous results on holographic metals and strange metals. © 2013 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ESR measurements In pressed pellets of doped Poly(3-Methylthiophene)(P3MT) were performed at 10 K and 50 K after cooling the system slowly from room temperature to 110 K, quenching to 77 K and then to 10 K. ESR line asymmetry (A/B) as a function of microwave power was observed and 9.4 GHz conductivity was obtained from Dyson's theory. The data is discussed in terms of Charge-Density Wave (CDW) depinning. At 50 K the threshold electric field is estimated to be less than 1 V/cm. At 10 K a subtle pinning of the CDW was observed around 15 mW.