172 resultados para direct search optimization algorithm
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper a novel Branch and Bound (B&B) algorithm to solve the transmission expansion planning which is a non-convex mixed integer nonlinear programming problem (MINLP) is presented. Based on defining the options of the separating variables and makes a search in breadth, we call this algorithm a B&BML algorithm. The proposed algorithm is implemented in AMPL and an open source Ipopt solver is used to solve the nonlinear programming (NLP) problems of all candidates in the B&B tree. Strategies have been developed to address the problem of non-linearity and non-convexity of the search region. The proposed algorithm is applied to the problem of long-term transmission expansion planning modeled as an MINLP problem. The proposed algorithm has carried out on five commonly used test systems such as Garver 6-Bus, IEEE 24-Bus, 46-Bus South Brazilian test systems, Bolivian 57-Bus, and Colombian 93-Bus. Results show that the proposed methodology not only can find the best known solution but it also yields a large reduction between 24% to 77.6% in the number of NLP problems regarding to the size of the systems.
Resumo:
The constant search for improvement and survival of the companies makes essential the utilization of cost reduction strategies and resources optimization. This study had as its objective the utilization of Lean Manufacturing tools for the repair process lead time reduction, in a car audio manufacturer. Performing an action research, the major problems were studied, such as the potential causes and the possible improvement activities, using the DMAIC methodology. An action plan was developed for all involved processes and, as a result, the objective was reached by making a direct impact on the customers’ satisfaction and adding a competitive differential for the company
Resumo:
In the universities, before the start of each school year, is held the distribution of classes among available teachers. Therefore, it is necessary to consider the maximum workweek for each teacher and their preferences for each discipline, to prevent a teacher to give lessons in two separate locations at the same time and to avoid some teachers to become overloaded while others with large clearance. This process, manually performed, is time consuming and does not allow the visualization of other combinations of assignment of teachers to classes, besides being liable to error. This work aims to develop a decision support tool for the problem of assigning teachers to classes in college. The project encompasses the development of a computer program using the concepts of object orientation and a tree search algorithm of a combinatorial nature called Beam Search. The programming language used is Java and the program has a graphical interface for entering and manipulating data of the problem. Once obtained the schedule data of classes and teachers is possible, by means of the tool, perform various simulations and manual adjustments to achieve the final result. It is an efficient method of class scheduling, considering the speed of task execution and the fact that it generates only feasible results
Resumo:
This work was developed starting the study of traditionals mathematical models that describe the epidemiology of infectious díseases by direct or indirect transmission. We did the classical approach of equilibrium solutions search, its analysis of stability analytically and by numerical solutions. After, we applied these techniques in a compartimental model of Dengue transmission that consider the mosquito population (susceptible vector Vs and 'infected vector VI), human population (suseeptíble humans S, infected humans I and recovered humans R) and just one sorotype floating in this population. We found the equilibrium solutions and from their analises, it was possible find the reprodution rate of dísease and which define if the disease will be endemic or not in the population.- ext, we used the method described a..~, [1] to study the infíuence of seasonalíty at vírus transmission, when it just acts on one of rates related with the vector. Lastly, we made de modeling considering the periodicity of alI rates, thereby building, a modeI with temporal dependence that permits to study periodicity of transmission through of the approach of parametrical ressonance and genetic algorithm
Resumo:
Wireless sensor networks (WSNs) are generally used to monitor hazardous events in inaccessible areas. Thus, on one hand, it is preferable to assure the adoption of the minimum transmission power in order to extend as much as possible the WSNs lifetime. On the other hand, it is crucial to guarantee that the transmitted data is correctly received by the other nodes. Thus, trading off power optimization and reliability insurance has become one of the most important concerns when dealing with modern systems based on WSN. In this context, we present a transmission power self-optimization (TPSO) technique for WSNs. The TPSO technique consists of an algorithm able to guarantee the connectivity as well as an equally high quality of service (QoS), concentrating on the WSNs efficiency (Ef), while optimizing the transmission power necessary for data communication. Thus, the main idea behind the proposed approach is to trade off WSNs Ef against energy consumption in an environment with inherent noise. Experimental results with different types of noise and electromagnetic interference (EMI) have been explored in order to demonstrate the effectiveness of the TPSO technique.
Resumo:
This paper describes a new methodology adopted for urban traffic stream optimization. By using Petri net analysis as fitness function of a Genetic Algorithm, an entire urban road network is controlled in real time. With the advent of new technologies that have been published, particularly focusing on communications among vehicles and roads infrastructures, we consider that vehicles can provide their positions and their destinations to a central server so that it is able to calculate the best route for one of them. Our tests concentrate on comparisons between the proposed approach and other algorithms that are currently used for the same purpose, being possible to conclude that our algorithm optimizes traffic in a relevant manner.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)