174 resultados para de Sitter relativity
Resumo:
Pós-graduação em Física - FEG
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The paper summarizes the parallel session C6 Q&A-everything you wanted to know about gravitational waves but were afraid to ask of the joint 10th Amaldi Conference on Gravitational Waves and 20th International Conference on General Relativity and Gravitation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, we will show the types of Lorentz transformations, from the most described in books, special Lorentz transformation that relates two inertial systems whose relative velocities are directed along an axis of the respective bases systems. However, we will see a peculiarity that goes unnoticed in this transformation, although they have reported in many books a parallel between the transformation inertial systems, due to the fact that the speed is parallel to an axis, it is actually a semi-parallel processing. The next transformation that we will see is one in which a system moves with a relative speed that has arbitrary direction with respect to a given system, we will show that this transformation may be appointed as non-rotational Lorentz transformation. Before obtain, the later type of transformation, the rotational Lorentz transformation, which is the interface between Special Relativity and General Relativity, we will describe the systems to be rotated, not just inertial systems, show what the characteristics are that define the non-rotational and rotational transformations. The in last topic of this chapter we will also show how the idea of Thoma’s theorythat uses this transformation to create what he defines as the proper coordinate axes of the particleused to obtain the factor 1/2 electron spin. In the last chapter we show how the Lorentz invariants are obtained, quantities measures that are also in different Lorentz reference, with the focus on mass that has erroneously been described in many books, that varies according to the agreement reference system
Resumo:
The constancy of the speed of light appears to be an unbreakable barrier for future interstellar journeys, tending to infinite energy would be needed to achieve such speed. However in the general relativity one can circumvent this limit and get arbitrarily higher global speeds, without violating the constancy of the speed of light. The so-called “warp-drive metrics is a theoretical means to achieve global superluminal speeds. The Alcubierre metric is one case in which the science fiction inspired reality, from which was drawn the term “warp-drive. In the present work, a study of the theories of special and general relativity and of some works on solutions that allow superluminal speeds will be done
Resumo:
The cosmological standard model needs a deep improvement when compared to recent observational data and also when contrasted with a broad theorical context. Al- ternative theories to General Relativity are possible candidates to reach the expectation Physics of Elementary Particles and Gravitation. Scalar-tensor theories seem to reappear from the ashes of the old work by Jordan corresponding appropriately low power limits of unifying theories. Being the Brans Dicke theory a scalar tensor is conducted a comprehensive study starting from its rst motivations to it s current one it is re flections
Resumo:
The flow of Ricci is an analytical tool, and a similar equation for heat geometry, a diffusive process which acts on a variety of metrics Riemannian and thus can be used in mathematics to understand the topology of varieties and also in the study geometric theories. Thus, the Ricci curvature plays an important role in the General Theory of Relativity, characterized as a geometric theory, which is the dominant term in the Einstein field equations. The present work has as main objectives to develop and apply Ricci flow techniques to general relativity, in this case, a three-dimensional asymptotically flat Riemannian metric as a set of initial data for Einstein equations and establish relations and comparisons between them.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we re-derive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: the time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) 'equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and 'equal-time consistency conditions'are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the 'equal-time consistency conditions'quantitatively approximates the perturbative results for the density contrast. Thus, we generalize the background method to properly incorporate the effect of curvature in the density and velocity fluctuations on short scales, and discuss the reasons behind this discrepancy. We conclude with a few comments on practical implementations and future directions.
Resumo:
This paper analyses the cosmological consequences of amodified theory of gravity whose action integral is built from a linear combination of the Ricci scalar R and a quadratic term in the covariant derivative of R. The resulting Friedmann equations are of the fifth-order in the Hubble function. These equations are solved numerically for a flat space section geometry and pressureless matter. The cosmological parameters of the higher-order model are fit using SN Ia data and X-ray gas mass fraction in galaxy clusters. The best-fit present-day t(0) values for the deceleration parameter, jerk and snap are given. The coupling constant beta of the model is not univocally determined by the data fit, but partially constrained by it. Density parameter Omega(m0) is also determined and shows weak correlation with the other parameters. The model allows for two possible future scenarios: there may be either an eternal expansion or a Rebouncing event depending on the set of values in the space of parameters. The analysis towards the past performed with the best-fit parameters shows that the model is not able to accommodate a matter-dominated stage required to the formation of structure.
Resumo:
We analyze free elementary particles with a rest mass m and total energy E
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)