276 resultados para cranial vault
Mechanism for the uncoupling of oxidative phosphorylation by juliprosopine on rat brain mitochondria
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The knowledge of the normal anatomy and variations regarding the management of tumors of the sellar region is paramount to perform safe surgical procedures. The sellar region is located in the center of the middle cranial fossa; it contains complex anatomical structures, and is the site of various pathological processes: tumor, vascular, developmental, and neuroendocrine. We review the microsurgical anatomy (microscopic and endoscopic) of this region and discuss the surgical nuances regarding this topic, based on anatomical concepts.
Resumo:
Fish control the relative flow rates of water and blood over the gills in order to optimise respiratory gas exchange. As both flows are markedly pulsatile, close beat-to-beat relationships can be predicted. Cardiorespiratory interactions in fish are controlled primarily by activity in the parasympathetic nervous system that has its origin in cardiac vagal. preganglionic neurons. Recordings of efferent activity in the cardiac vagus include units firing in respiration-related bursts. Bursts of electrical stimuli delivered peripherally to the cardiac vagus or centrally to respiratory branches of cranial, nerves can recruit the heart over a range of frequencies. So, phasic, efferent activity in cardiac vagi, that in the intact fish are respiration-related, can cause heart rate to be modulated by the respiratory rhythm. In elasmobranch fishes this phasic activity seems to arise primarily from central feed-forward interactions with respiratory motor neurones that have overlapping distributions with cardiac neurons in the brainstem. In teleost fish, they arise from increased levels of efferent vagal activity arising from reflex stimulation of chemoreceptors and mechanoreceptors in the orobranchial, cavity. However, these differences are largely a matter of emphasis as both groups show elements of feed-forward and feed-back control of cardiorespiratory interactions. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Most lizards feed on a variety of food items that may differ dramatically in their physical and behavioral characteristics. Several lizard families are known to feed upon hard-shelled prey (durophagy). Yet, specializations toward true molluscivory have been documented for only a few species. As snails are hard and brittle food items, it has been suggested that a specialized cranial morphology, high bite forces, and an adapted feeding strategy are important for such lizards. Here we compare head and skull morphology, bite forces, and feeding kinematics of a snail-crushing teiid lizard (Dracaena guianensis) with those in a closely related omnivorous species (Tupinambis merianae). Our data show that juvenile D. guianensis differ from T. merianae in having bigger heads and greater bite forces. Adults, however, do not differ in bite force. A comparison of feeding kinematics in adult Dracaena and Tupinambis revealed that Dracaena typically use more transport cycles, yet are more agile in manipulating snails. During transport, the tongue plays an important role in manipulating and expelling shell fragments before swallowing. Although Dracaena is slow, these animals are very effective in crushing and processing hard-shelled prey. J. Exp. Zool. 317A:371381, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
The aim of this study was to describe the morphology, morphometry and ultrastructure of segments of thoracic and abdominal aorta portions in four male and female paca (Cuniculus paca). Parts of the segments were examined by light microscopy and part by scanning electron microscopy. Thickness measurements of the tunica intima and media complex and tunica adventitia of the aorta were taken. In all animals the thickness values for the tunica intima and media complex of the cranial thoracic aorta were significantly higher (mean: 702.19 mu m) when compared to the values of other aortic segments analyzed (means: 354.18 mu m; 243.55 mu m). The layers of the vessel walls show variations in structure and thickness, presumably due to an adaptation to functionaldemand.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this work was to evaluate the morphological, growth characteristics of skeletal muscle tissue III Pirarucu (Arapaima gigas) using alevins (50 days old) and juveniles (1 year old). Muscle samples were collected from dorsal, lateral cranial mid lateral caudal regions, and then frozen in liquid nitrogen. Histological frozen sections (10 [mu]m) were stained with HE and Gomori Trichrome for morphological analysis, and NADH-TR to evaluate muscle fiber oxidative metabolism. Morphometric analysis samples were obtained from dorsal and lateral cranial regions, and the smallest-diameter white fibers were measured. White dorsal muscle was thicker, and two muscle fiber compartments were identified in the lateral cranial region: red (superficial) mid white (deep) muscle. Hyperplasia muscle growth predominated in alevins mid hypertrophy in juveniles.
Resumo:
The elements related to the morphology of the liver of paca (Cuniculus paca), the second largest rodent of the Brazilian fauna, were observed; this species present zootechnical potential. Eight animals from the animals sector of Faculdade de Ciencias Agrarias e Veterinarias - Campus of Jaboticabal - UNESP, which is duly certified by IBAMA as an experimental breeding institute, were used. Through a dissection procedure, it was found that the liver of the paca is located in the cranial portion of the abdomen, immediately after the diaphragm, to which it is connected by the triangular, coronary, and falciform ligaments, having its bigger part located right to the medium plan. The liver of this rodent presents the following lobation: right lateral lobe, right medial lobe, quadrate lobe, left medial lobe, and left lateral lobe, besides the caudate lobe formed by the papillary process of caudate lobe and the caudate process of caudate lobe. Gallbladder is located between the quadrate and right medial lobes. Fragments of this organ were collected, fixed, and histologically prepared, being the samples analyzed through light microscopy. It was microscopically observed that intralobular connective tissue is scarce, basically it consists polyhedral hepatocytes organized into cords interposed between sinusoids and the portal triads are found in the lobe, consisting of the portal vein, hepatic artery, and biliary duct.
Resumo:
The disposition of the abdominal aorta branching in Mesocricetus auratus is described, establishing variation groups with relation to the celiac, cranial mesenteric, renal, genital and caudal mesenteric arteries. Sixty animals (30 males and 30 females) of different ages and weights, were anesthetized with chloroform, injected with contrasting substance in the abdominal aorta (50 animals with Neoprene latex and 10 with a radioopaque mass), after which they were dissected with the help of a stereoscopic microscope. The animals with radioopaque masses were radiographed in comparison with the other animals. The results are expressed in relative percentage figures and compared with other mammalian arterial dispositions.
Resumo:
The author studied the structure of the tissue components of the tunicae of the terminal segment of the sigmoid sinus, particularly at the level of the transition between the sigmoid sinus, the superior bulb of the jugular vein and the first portion of the human internal jugular vein; it was established that the transition between the sigmoid sinus and the first portion of the internal jugular vein occupies the whole extension of the superior bulb of the jugular vein up to the inferior third of the first portion of this vessel. These vascular walls exhibit a structure similar to that of the dura, i.e. the tunica adventitia is formed by fascicles of collagenic fibers which describe discontinuous spirals, more open proximal to the beginning of the first portion of the internal jugular vein. Approximately in the inferior third of the first portion of the internal jugular vein, there appear fascicles of smooth muscle fibers which are arranged similarly to those of the venous walls. The tunica intima of these vascular segments exhibits an endothelium resting on a network of elastic fibers which may play the role of an internal elastic lamina. From the bony border of the jugular foramen there originates a connective system whose fascicles of collagenic and elastic fibers incorporate to the wall of the internal jugular vein after describing a stretch in spiral around the vascular lumen.
Resumo:
Termino-lateral neurorrhaphies have been used up to the beginning of this century. After this period, they have no longer been reported. We tested the efficacy of a new type of latero-terminal neurorrhaphy and evaluated the role of the epineural sheath. A group of 10 rats had the fibular nerve sectioned and the distal ending was sutured to the lateral face of the tibial nerve without removing the epineurium. All experiments were made on the right side, the left one remaining untouched in half of the animals of each group. The other half were denervated by sectioning and inverting the endings of the fibular nerves. In this way, tibial cranial muscles were either normal or denervated in the left side and reinnervated through latero-terminal neurorrhaphy in the right side. After 7.7 months, the animals were subjected to electrophysiological tests, sacrificed, and the nerves and muscles were taken for histological exams. A response of the tibial cranial muscle was obtained in 75% of the animals. The distal ending of the fibular nerve showed an average of 498 nerve fibers. The average areas of the reinnervated tibial cranial muscles were (mu 2):841.30 for M2n and 1798.33 for M2d. We concluded that the termino-lateral neurorrhaphy was functional, conducting electrical stimuli and allowing the passage of axons from the lateral surface of a healthy nerve, to reconstitute the distal segment of a sectioned nerve. The presence of the epineurium was no impediment to axonal regeneration or to the passage of electrical stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The morphogenetic processes acting in the skull of the lizard Tupinambis merianae were investigated by geometric morphometric techniques. The observed ontogenetic shape change involved a widening of the anterior extremity, stretching and narrowing of the midface, narrowing of the braincase, orbital reduction and elongation of the temporal region (origin of jaw adductor muscles). This change occurred mostly in a localized way in certain cranial regions. The major components identified were: rostrum, midface, dermal elements of braincase (functionally influenced) and endochondral elements of braincase (embryologically influenced). The growth patterns lead to an increased robustness of the skull (particularly the anterior extremity) and a reduction of cranial kinesis. These changes, together with the ontogenetic variation in dentition aid in the ontogenetic variation observed in the diet of these animals, which shift from carnivory to omnivory.
Resumo:
The complete unilateral cranial nerve paralysis syndrome, or Garcin 's Syndrome, is a rare clinical condition. The purpose of this paper is to describe a case associated with non-Hodgkin s lymphoma. A 41-year-old male patient developed a progressive cranial nerve disorder. On the right hand side, there was impairment of all cranial nerves. We report the clinical and laboratorial findings. Lymph node exeresis revealed a Diffuse Non-Hodgkin s Lymphoma, with diffuse hone marrow infiltration. Cerebrospinal fluid showed pleocytosis, with 100% of immunoblasts. The CT scan showed no tumoral masses on the brain stem. This is the first clinical description of a complete Garcin 's Syndrome caused by diffuse lymphomatous infiltration of the cranial nerves.
Resumo:
Morphological features of the mid-palatal suture were studied in human foetuses from 4 to 9 months of intra-uterine life. The foetuses were divided into three age groups, GI (16-23 weeks), GII (24-31 weeks) and GIII (32-39 weeks). The mid-palatal suture in GI foetuses is rectilineal in form with a wide space between the palatal processes of the maxilla. The suture has a sinuous nature in GII and GIII foetuses due to growth of the bone processes crossing the mid-line. A wide zone of cellular proliferation observed in GI narrows in GII and GIII foetuses. The imbricating nature of the suture in GII and GIII is caused by bone growth adjacent to the mid-palatal suture. Sharpey's fibres, emerging from the bone processes, run to the median region of the mid-palatal suture and are observed from GI foetuses onwards. The collagen fibres of the mid-palatal suture are orientated transversely under the oral epithelium and exhibit a regular meshwork with a predominance of sagittal fibres in the median region of the suture. These fibres are orientated transversely and obliquely at the junction with the nasal septum.