448 resultados para cation exchanger resin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this in vitro study was to evaluate the effect of different bur types and acid etching protocols on the shear bond strength (SBS) of a resin modified glass ionomer cement (RM-GIC) to primary dentin. Forty-eight clinically sound human primary molars were selected and randomly assigned to four groups (n=12). In G1, the lingual surface of the teeth was cut with a carbide bur until a 2.0-mm-diameter dentin area was exposed, followed by the application of RM-GIC (Vitremer - 3M/ESPE) prepared according to the manufacturer's instructions. The specimens of G2, received the same treatment of G1, however the dentin was conditioned with phosphoric acid. In groups G3 and G4 the same procedures of G1 and G2 were conducted respectively, nevertheless dentin cutting was made with a diamond bur. The specimens were stored in distilled water at 37 degrees C for 24h, and then tested in a universal testing machine. SBS. data were submitted to 2-way ANOVA (= 5%) and indicated that SBS values of RM-GIC bonded to primary dentin cut with different burs were not statistically different, but the specimens that were conditioned with phosphoric acid presented SBS values significantly higher that those without conditioning. To observe micromorphologic characteristics of the effects of dentin surface cut by diamond or carbide rotary instruments and conditioners treatment, some specimens were examined by scanning electron microscopy. Smear layer was present in all specimens regardless of the type of rotary instrument used for dentin cutting, and specimens etched with phosphoric acid presented more effective removal of smear layer. It was concluded that SBS of a RM-GIC to primary dentin was affected by the acid conditioning but the bur type had no influence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of uroguanylin (UGN) oil K(+) and H(+) secretion in the renal tubules of the rat kidney was studied using in vivo stationary microperfusion. For the study of K(+) secretion, a tubule was Punctured to inject a column of FDC-green-colored Ringer's solution with 0.5 mmol KCI/L 10(-6)(mol UGN/L, and oil was Used to block fluid flow. K(+) activity and transepithelial potential differences (PD) were measured with double microelectrodes (K(+) ion-selective resin vs. reference) in the distal tubules of the same nephron. During perfusion, K(+) activity rose exponentially, from 0.5 mmol/L to stationary concentration, allowing for the calculation of K(+) secretion J(K)). JK increased from 0.63 +/- 0.06 nmol.cm(-2).s(-1) in the control croup to 0.85 +/- 0.06 in the UGN group (p < 0.01). PD was -51.0 +/- 5.3 mV in the control group and -50.3 +/- 4.98 mV in the UGN group. In the presence of 10(-7) mol iberiotoxin/L, the UGN effect was abolished: JK was 0.37 +/- 0.038 nmol-cm(-2).s(-1) in the absence of, and 0.38 +/- 0.025 in the presence of, UGN. indicating its action oil rnaxi-K channels. In another series of experiments, renal tubule acidification was studied, using similar method: proximal and distal tubules were perfused with solutions containing 25 mmol NaHCO(3)/L. Acidification half-time was increased both in proximal and distal segments and, as a consequence, bicarbonate reabsorption decreased in the presence of UGN (in proximal tubules, from 2.40 +/- 0.26 to 1.56 +/- 0.21 nmol-cm(-2).s(-1)). When the Na(+)/H(+) exchanger was inhibited by 10(-4) mol hexamethylene amiloride (HMA)/L, the control and UGN groups were not significantly different. In the late distal tubule, after HMA, UGN significantly reduced J(HCO3)(-). indicating all effect of UGN oil H(+)-ATPase. These data show that UGN stimulated J(K)(+) by actin, oil maxi-K channels. and decreased J(HCO3)(-) by acting on NHE3 in proximal and H(+)-ATPase in distal tubules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The limitation of photoactivation of dual-polymerized resin cements along the margins of metal restorations may adversely affect the mechanical properties of these cements, thus impairing the retention of restorations. The aim of this study was to assess the bond strength of cast metal crowns cemented with three dual-polymerized resin cements, using a chemically-activated resin cement and zinc phosphate as controls. Fifty nickel-chromium alloy crowns were cast and randomly assigned to five groups of equal size. Castings were cemented on their corresponding metal dies with one of the tested luting agents: Scotchbond Resin Cement, Enforce and Panavia F (dual-polymerized resin cements), Cement-It (chemically-activated resin cement) and Zinc Phosphate Cement (zinc phosphate cement). Specimens were stored in distilled water at 37 degreesC for 24 h and then loaded in tension until failure. Panavia F and Zinc Phosphate Cement provided the highest and lowest bond strength means, respectively. Scotchbond Resin Cement, Enforce and Cement-It cements exhibited similar intermediate values, but with statistically significant difference compared to the other materials (P < 0.05). Even with the restriction or absence of light activation, all tested dual-polymerized resin cements produced significantly higher bond strength than did the zinc phosphate cement and yielded similar or better results than the chemically activated cement. It should be pointed out that the findings of this study relate to a test scenario which does not mimic clinical circumstances and that further work is required to identify the clinical significance of the reported tensile bond strength differences between the different luting materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to evaluate two different types of root canal sealers: AH Plus (an epoxy resin-based sealer) and Fill Canal (a zinc oxide-eugenol based sealer). A total of 34 root canals with vital pulp from dogs' premolars were used. After instrumentation, the root canals were filled with gutta-percha and AH Plus or gutta-percha and Fill Canal sealers using a classical technique of lateral condensation. After histological processing, the sections were stained with hematoxylineosin or Mallory's trichrome stain. Inflammatory cells or areas of necrosis were not associated with AH Plus. Hard tissue formation apically to the material was observed in 14 specimens. The Fill Canal sealer presented an inflammatory response of moderate intensity in the periapical region, mainly adjacent to the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resin solvation properties affect the efficiency of the coupling reactions in solid-phase peptide synthesis. Here we report a novel approach to evaluate resin solvation properties, making use of spin label electron paramagnetic resonance (EPR) spectroscopy. The aggregating VVLGAAIV and ING sequences were assembled in benzhydrylamine-resin with different amino group contents (up to 2.6 mmol/g) to examine the extent of chain association within the beads. These model peptidyl-resins were first labeled at their N-terminus with the amino acid spin label 2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Their solvation properties in different solvents were estimated, either by bead swelling measurement or by assessing the dynamics of their polymeric matrixes through the analysis of Toac EPR spectra, and were correlated with the yield of the acylation reaction. In most cases the coupling rate was found to depend on bead swelling. Comparatively, the EPR approach was more effective. Line shape analysis allowed the detection of more than one peptide chain population, which influenced the reaction. The results demonstrated the unique potential of EPR spectroscopy not only for improving the yield of peptide synthesis, even in challenging conditions, but also for other relevant polymer-supported methodologies in chemistry and biology.