379 resultados para Wood chemical properties
Resumo:
The jambu is a broad vegetable consumption in Northern Brazil, especially in Pará, known by the jambu and other common names is native to the Amazon region has been used and cultivated for culinary and also recently in natural medicines by their chemical properties, attributed to the spilanthol compound. Knowing the amount of nutrient uptake in plants, especially at the taken, it is important to evaluate the removal of nutrients necessary for economic fertilizer recommendations. So the goal of this project was to determine the accumulation of nutrients in plants of jambu (leaf and inflorescence) under different fertilizations. The experiment was conducted at São Manuel Experimental Farm UNESP. The statistical was arranged in the randomized block design, in a 2 x 6 factorial scheme, two sources of fertilizers (organic and mineral) and six doses of nitrogen, with four replications. We evaluated the macronutrients of accumulation N, P, K, Ca, Mg, S and micronutrients of accumulation B, Cu, Fe and Zn in leaves and inflorescence. The plants responded more jambu nutrients of translocation phosphorus (P), magnesium (Mg), sulfhur (S), boron (B), copper (Cu) and iron (Fe) in the inflorescences and phosphorus (P), calcium (Ca), manganese (Mg), sulfur (S), boron (B), copper (Cu) and iron (Fe) in leaves to organic fertilization demonstrating the effectiveness of using this source of fertilizer nutrients indicating that this was a defining characteristic in response to the accumulation of nutrients in the leaves and inflorescences jambu. Plants jambu are more responsive to fertilizer for the mineral of translocation nitrogen (N) and manganese (Mn) for both the sheet and for the inflorescences of plants jambu.
Resumo:
Purpose: The purpose of this paper is to evaluate the antioxidant activity of ginger ethanol extract in soybean oil under thermoxidation. Design/methodology/approach: A total of four treatments were used: soybean oil free of synthetic antioxidants, soybean oil containing 2,500 mg/kg of ginger extract, soybean oil containing 50 mg/kg of TBHQ, soybean oil containing the mixture of natural extract, and TBHQ in the before-cited concentration. The treatments were discontinuously submitted to plates heated at 180°C, for 20 hours. Samples were removed in the times of 0, 4, 8, 12, 16 and 20 hours of heating and they were analyzed as to their oxidative stability, total polar compounds, peroxide and conjugated diene values. Findings: The results showed the efficiency of the ginger extract in protecting the oil against lipid oxidation. It could be concluded that ginger extract might be indicated as an additive that acts against lipid oxidation and, consequently, increases shelf life of food. Practical implications: These studies may prove to be beneficial to the exploitation of natural antioxidant sources for the preservation and/or extension of raw and processed food shelf life. Therefore, they could also be applied in the area of pharmaceuticals for the protection of human life. Originality/value: This study offers information on the use of natural antioxidants as an alternative to the use of synthetic antioxidants, which might be considered toxic. © Emerald Group Publishing Limited.
Resumo:
Ethanol with added water may be found during the process of assessing its physical and chemical properties. This addition can damage automotive vehicle engines and also may contribute to tax evasion. The present contribution describes a method based on a photothermal transparent transducer to determine the water content in ethanol. A chamber with a window of lithium tantalate coated with a thin layer of indium tin oxide was used, and a 1450-nm laser diode was employed as the excitation source. The results indicated a nearly linear response of the apparatus, as a function of the water content in water/ethanol solutions ranging from 0 to 100 (vol.%). The results for the dependency of the photothermal signal on the laser power and chopping frequency suggested that reliable results can be obtained using laser power and chopping rates above 100 mW and 10 Hz, respectively. The results reported here may be useful in the development of an alternative method that can provide real-time data on the water concentration in ethanol in a rapid, portable and unambiguous way, and that can be easily used in laboratory analyses or in gas stations. © 2013 Elsevier B.V.
Resumo:
Application of nanoscale materials in photovoltaic and photocatalysis devices and photosensors are dramatically affected by surface morphology of nanoparticles, which plays a fundamental role in the understanding of the physical and chemical properties of nanoscale materials. Zinc oxide nanoparticles with an average size of 20 nm were obtained by the use of a sonochemical technique. X-ray diffraction (XRD) associated to Rietveld refinements and transmission electron microscopy (TEM) were used to study structural and morphological characteristics of the samples. An amorphous shell approximately 10 nm thick was observed in the ultrasonically treated sample, and a large reduction in particle size and changes in the lattice parameters were also observed. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Kraft pulp produced from juvenile and mature wood from thirty-two-year-old Corymbia citriodora trees was evaluated. The stem was subdivided into regions of juvenile and mature wood, and then it was transformed into chips. These materials were then cooked in the Laboratory of Pulp and Paper at São Paulo State University (UNESP, Botucatu, SP, Brazil) and the physico-mechanical properties of the pulps were determined. The results showed that: (1) the pulp yields of mature wood were up to 4.4% greater in comparison to the juvenile wood, (2) the juvenile wood pulp required a shorter refining time than mature wood to reach the same Schopper-Riegler degree, (3) the juvenile wood pulp presented lower specific volume, and (4) the mature wood pulp presented greater air resistance, tensile, tear and burst index values, stress-strain factor, and stretch than the juvenile wood pulp.
Resumo:
The study objective was to evaluate the influence of the addition of soybeans residues on the chemical properties of Eutrudox and Hapludox soils. Soybean leaves and stems were incubated for 0-200 days. The statistical model used was a 5×4 factorial (plantxincubation period) with three replications. Soils without addition of plants were used as controls. Total Organic Carbon (TOC), Soluble Carbon (SC), Total Carbohydrates (TC), Humic Acid (HA), Fulvic Acid (FA) and Humification Rate (HR) were determined. Higher values of chemical attributes (TOC, SC and TC) were found in the Eutrudox soil than in the Hapludox soil and these values increased significantly (p<0.05) after 50 days of incubation in relation to the initial period. The TOC, SC and TC increased in soils amended with soybean plants when compared to controls without plants. HA and FA contents and HR were not affected by the addition of soybean residues. Maximum HA contents were found after 100 days and maximum FA contents and HR were found after 200 days incubation in both soils. It can be concluded that the addition of soybean residues increased the soil chemical properties when compared to the controls. © 2013 Academic Journals Inc.
Resumo:
Eumelanin is a ubiquitous pigment in the human body, animals, and plants, with potential for bioelectronic applications because of its unique set of physical and chemical properties, including strong UV-vis absorption, mixed ionic/electronic conduction, free radical scavenging and anti-oxidant properties. Herein, a detailed investigation is reported of eumelanin thin films grown on substrates patterned with gold electrodes as a model system for device integration, using electrical measurements, atomic force microscopy, scanning electron microscopy, fluorescence microscopy, and time-of-flight secondary ion mass spectroscopy. Under prolonged electrical biasing in humid air, one can observe gold dissolution and formation of gold-eumelanin nanoaggregates, the assembly of which leads to the formation of dendrites forming conductive pathways between the electrodes. Based on results collected with eumelanins from different sources, a mechanism is proposed for the formation of the nanoaggregates and dendrites, taking into account the metal binding properties of eumelanin. The surprising interaction between eumelanin and gold points to new opportunities for the fabrication of eumelanin-gold nanostructures and biocompatible memory devices and should be taken into account in the design of devices based on eumelanin thin films. © 2013 WILEY-VCH Verlag GmbH & Co.
Resumo:
The Archaeological Dark Earth (ADE) soils are characterized by its high fertility, dark color, and presence of pottery fragments. Regarding the formation of ADE, the most widely accepted hypothesis is that anthropogenic processes involving pre-Columbian populations made them. The purpose of this study is to characterize ADE units located in the Southern Amazon Region, in the cities of Apuí and Manicoré. Seven ADE sites were selected, trenches opened and the soil profiles characterized morphologically. Then, samples of each horizon were collected for analyses of the following physical and chemical properties: particle size, water-dispersible clay, flocculation, soil bulk density, particle density, total porosity, pH in water and KCl solutions, Ca2+, Mg2+, K+, Al3+, available P, H+Al, and organic C. Also, total oxides, free oxides and amorphous forms were analyzed. The texture of the anthropic A horizon ranged from sandy loam to clay loam. The pottery fragments and lithic material were found in similar quantities and at similar depths in the A horizons of the studied soil profiles, suggesting some similarity between the anthropogenic factors of formation. The anthropic horizons of profiles P3, P4, and P7 had a eutrophic character and high to very high levels of available phosphorus, compared to P1, P2, P5, and P6, indicating the heterogeneity of the ADEs.
Resumo:
In tropical regions, the residual effect of phosphate fertilizer source is of crucial importance. This study aimed to evaluate the effects of application of P sources in chemical properties of soil, nutrition and productivity of sugarcane plant and during the first and second ratoon. The sources of P applied in furrows at planting were, triple superphosphate, Arad phosphate, bone meal (100 kg ha-1 P2O5 total) and a control without P, the varieties of sugarcane studied were IAC86-2480 and SP79-1011. A randomized block design in a 4 × 2 factorial was used, with four replications. The study was conducted in the municipality of Alta Floresta-MT, Brazil, in Typic Hapludox. After each cutting, in soil P content, pH and Ca were evaluated. In the plant, the production of green and dry matter of shoots, the concentration of P in the biomass harvested, the export of P and agronomic efficiency of the sources of P were determined. The bone meal had a higher agronomic efficiency resulted in greater accumulation and export of P by crop, higher content of available Ca and P and increase soil pH. The Arad reactive phosphate increased its agronomic efficiency between crop cycles.
Resumo:
Soil degradation can be defined as a process that reduces the ability of soil to produce property or services. Thus, the objective was to study the influence of topography and erodibility in the distribution of the chemical attributes of an Alfissol in degraded areas of Gilbués in the State of Piaui, Brazil. In the chosen area a sampling grid of 1 ha was demarcated, with points spaced at 10 x 10 m, and 121 samples were collected at intersections, in 0-0.20 m depth. Each point was georeferenced as a way to demarcate the area and prepare a topography map. For all samples pH, organic matter, phosphorus, potassium, calcium, magnesium, hydrogen and aluminum were determined. The estimate of erodibility was calculated from the equation proposed by Denardin. Based on the experiment and the results obtained it is concluded that the number of samples used was sufficient to determine the variability of soil in degraded areas of the Gilbués municipality. The discontinuity in the topography of the landscape and erodibility cause a moderate degree of heterogeneity in most chemical properties of the studied soil, establishing specific management zones.
Resumo:
In the no till system, soil acidity correction practice is restricted to limestone use and there is little information regarding slag. The study aimed to evaluate the amendments in soil chemical properties, yield and bean nutrient uptake according to the application forms of slags, compared to limestone, in the implantation of no till system. The experiment was conducted in the field at College of Agricultural Sciences, Botucatu (SP) from December 2010 to May2011. The treatments consisted of two application ways of seven soil acidity correctives: steel slag, blast furnace slag, ladle furnace slag, stainless steel slag (agrosilício), wollastonite, lime and calcined dolomite lime, plus one control without corrective application. Each material dose was calculated to raise the base saturation to 70%. Soil acidity was neutralized down to 20cm with limestones, whereas for wollastonite and ladle furnace slag those effects occurred down to 10cm, for steel slag, blast furnace slag and agrosilício the corrective effect was restricted to the first 5cm. The bean yield increased by application of correctives in soil acidity, without differences between the application ways.
Resumo:
Natural rubber/gold nanoparticles membranes (NR/Au) were studied by ultrasensitive detection and chemical analysis through surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering in our previous work (Cabrera et al., J. Raman Spectrosc. 2012, 43, 474). This article describes the studies of thermal stability and mechanical properties of SERS-active substrate sensors. The composites were prepared using NR membranes obtained by casting the latex solution as an active support (reducing/establishing agents) for the incorporation of colloidal gold nanoparticles (AuNPs). The nanoparticles were synthesized by in situ reduction at different times. The characterization of these sensors was carried out by thermogravimetry, differential scanning calorimetry, scanning electron microscopy (SEM) microscopy, and tensile tests. It is suggested an influence of nanoparticles reduction time on the thermal degradation of NR. There is an increase in thermal stability without changing the chemical properties of the polymer. For the mechanical properties, the tensile rupture was enhanced with the increase in the amount of nanoparticles incorporated in the material. © 2013 Wiley Periodicals, Inc.
Resumo:
The objective of this work was to evaluate the magnetic susceptibility efficiency for estimating the support capacity of areas for vinasse application. Two hundred forty-one soil samples were collected from a 380-ha area, on which soil chemical properties, clay content, and magnetic susceptibility were determined. Vinasse requirement was calculated for each sample. Data were subjected to descriptive statistical analysis, and regression models were developed between magnetic susceptibility and the other evaluated attributes. The analysis of data spatial dependence was performed using geostatistics. Kriging maps and cross variograms were built in order to investigate the spatial correlation between soil magnetic susceptibility and studied attributes. Based on the map of vinasse requirement, on the soil classes, and on the kriging map, calculations were done for average vinasse dose and average soil support capacity, weighted by the area. Magnetic susceptibility has significant linear spatial correlation with recommended vinasse doses and soil support capacity for the application of this effluent, and it can be used as a pedotransfer function for indirect quantification of soil support capacity.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)