286 resultados para Usual intake


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Male adult rats that received an intragastric load of 2 ml of 12% NaCl (n = 13) ingested both water (4.0 +/- 0.2 ml/2 h) and 0.9% NaCl (3.7 +/- 1.0 ml/2 h) when compared with rats that received intragastric load of 2 ml ofwater(water: 0.1 +/- 0.1; 0.9% NaCl: 0.5 +/- 0.3 ml/2 h, n = 12) in a two-bottle test. Intragastric sodium load increased plasma sodium concentration and osmolality by 5% and reduced plasma renin activity by half compared to rats that received intragastric load of water. Intravenous infusion of 1.5 ml/10 min of 10% NaCl (n = 16) also induced ingestion of water (6.2 +/- 0.8 ml/2 h) and 0.9% NaCl (2.9 +/- 0.8 ml/2 h) compared with intravenous infusion of 1.5 ml/10 min of 0.9% NaCl (water: 0.9 +/- 0.4; 0.9% NaCl: 0.5 +/- 0.2 ml/2 h, n = 14). Therefore, a sodium load that raises natremia and plasma osmolality, and therefore induces cell dehydration, results in both 0.9% NaCl and water ingestion when the rats have a two-bottle choice. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isotonic NaCl is ingested in addition to water by cell-dehydrated rats in two-bottle tests. The objective of the present work was to find out whether mineral intake in the cell-dehydrated rat is specific to NaCl in a five-bottle test. Adult male Sprague Dawley rats had distilled water and four mineral solutions at palatable concentrations (0.01 M KCl, 0.05 mM CaCl2, 0.15 M NaHCO3, 0.15 M NaCl) simultaneously available for consumption. Cell-debydration was produced infusing 1.5 ml of NaCl solution (0.15, 0.25, 0.5, 1.01, 2.0, 4.0 M) intravenously for 10 min and intakes were recorded for the next hour. It was observed a NaCl concentration-dependent increase in 0.01 M KCl intake. The ingestion of the other mineral solutions was not significantly altered compared to infusion of 0.15 M NaCl. The ingestion of KCl was not related to changes in serum potassium concentration. The ingestion of KCl was reduced in half and water was the preferred fluid when the five-bottle test was performed with mineral solutions at isomolar (0.15 M) concentrations. There was no increase in intake of other mineral solution in the isomolar test. No preference was observed for palatable or isomolar solutions during early extracellular dehydration until 4 h after subcutaneous injection of furosemide, in spite of the increase in total volume intake. Therefore, mineral intake induced by cell dehydration is not specific for NaCl solution. The type of mineral solution available influences the choice and KCl. is the preferred solution of the cell-dehydrated rat in the conditions of the present study. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we investigated the participation of adrenergic neurotransmission in angiotensin II- (ANGII)-induced water intake and urinary electrolyte excretion by means of injection of the alpha(1)-, alpha(2)-, and beta-adrenoceptor antagonists and ANGII into the medial preoptic area (MPOA) in rats. Prazosin (an alpha(1)-adrenergic antagonist) antagonized the water ingestion, Na+, K+ and urine excretion induced by ANGII, whereas yohimbine (an alpha(2)-adrenergic antagonist) enhanced the Na+, K+ and urine excretion induced by ANGII. Propranolol (a nonselective beta-adrenoceptor blocker) antagonized the water ingestion and enhanced the Na+ and urine excretion induced by ANGII. Previous treatment with prazosin reduced the presser responses to ANGII, whereas yohimbine had opposite effects. Previous injection of propranolol produced no effects in the presser responses to ANGII. These results suggest that the adrenergic neurotransmission in the MPOA may actively participate in ANGII-induced dipsogenesis, natriuresis, kaliuresis and diuresis in a process that involves alpha(1)-, alpha(2)-, and beta-adrenoceptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Diet composition is one of the factors that may contribute to intraindividual variability in the anticoagulant response to warfarin. Aim of the study To determine the associations between food pattern and anticoagulant response to warfarin in a group of Brazilian patients with vascular disease. Methods Recent and usual food intakes were assessed in 115 patients receiving warfarin; and corresponding plasma phylloquinone (vitamin K-1), serum triglyceride concentrations, prothrombin time (PT), and International Normalized Ratio (INR) were determined. A factor analysis was used to examine the association of specific foods and biochemical variables with anticoagulant data. Results Mean age was 59 +/- 15 years. Inadequate anticoagulation, defined as values of INR 2 or 3, was found in 48% of the patients. Soybean oil and kidney beans were the primary food sources of phylloquinone intake. Factor analysis yielded four separate factors, explaining 56.4% of the total variance in the data set. The factor analysis revealed that intakes of kidney beans and soybean oil, 24-h recall of phylloquinone intake, PT and INR loaded significantly on factor 1. Triglycerides, PT, INR, plasma phylloquinone, and duration of anticoagulation therapy loaded on factor 3. Conclusion Fluctuations in phylloquinone intake, particularly from kidney beans, and plasma phylloquinone concentrations were associated with variation in measures of anticoagulation (PT and INR) in a Brazilian group of patients with vascular disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiogenesis, under normal conditions, is a tightly regulated balance between pro- and antiangiogenic factors. The goal of this study was to investigate the mechanisms involved in the control of the skeletal muscle angiogenic response induced by electrical stimulation during the suppression of plasma renin activity (PRA) with a high-salt diet. Rats fed 0.4% or 4% salt diets were exposed to electrical stimulation for 7 days. The tibialis anterior ( TA) muscles from stimulated and unstimulated hindlimbs were removed and prepared for gene expression analysis, CD31-terminal deoxynucleotide transferase-mediated dUTP nick-end labeling ( TUNEL) double-staining assay, and Bcl-2 and Bax protein expression by Western blot. Rats fed a low-salt diet showed a dramatic angiogenesis response in the stimulated limb compared with the unstimulated limb. This angiogenesis response was significantly attenuated when rats were placed on a high-salt diet. Microarray analysis showed that in the stimulated limb of rats fed a low-salt diet many genes related to angiogenesis were upregulated. In contrast, in rats fed a high-salt diet most of the genes upregulated in the stimulated limb function in apoptosis and cell cycle arrest. Endothelial cell apoptosis, as analyzed by CD31-TUNEL staining, increased by fourfold in the stimulated limb compared with the unstimulated limb. There was also a 48% decrease in the Bcl-2-to-Bax ratio in stimulated compared with unstimulated limbs of rats fed a high-salt diet, confirming severe apoptosis. This study suggests that the increase in endothelial cell apoptosis in TA muscle might contribute to the attenuation of angiogenesis response observed in rats fed a high-salt diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was conducted to evaluate food intake and digestive efficiency of temperate wool and tropic semi-arid hair lambs, according to different concentrate: forage ratios in diet. Twenty-four lambs, averaging 90 +/- 1.8 days old and a mean body weight of 20 +/- 0.69 kg, 12 of them wool lambs, F, from Ideal x Ile de France crossing, and 12 others pure Santa Ines hair lambs, were distributed into a four replication 3 x 2 factorial arrangement consisting of three diets and two genotypes. Experimental diets consisted of: D1 = 60% concentrate mix (C) and 40% Cynodon sp. cv. Tifton-85 hay (F), D2 = 40% C and 60% F, and D3 = 20% C and 80% F. D1 was formulated for a daily gain of 300g per animal. Increasing forage levels in diets resulted in linear reductions (P < 0.01) in DM, OM, CP, TCH and metabolizable energy (ME) intake, and a linear increase (P < 0.01) in NDF ingestion. Tropic semi-arid hair lambs had higher DM, OM, NDF, CP, and TCH intake than temperate wool lambs. Although there were no genotype effects in OM and GE coefficient of digestibility, hair lambs showed more efficient (P < 0.05) digestibility of DM, CP, NDF and TCH. Increases in forage levels of diets corresponded to a negative linear effect (P < 0.01) in the apparent digestibility of DM, OM, CP, TCH and GE, while apparent digestibility of NDF increased linearly (P < 0.01). Total endogenous nitrogen (fecal plus urinary N) for F(1) Ideal x Ilede France wool and Santa Ines hair lambs were, respectively, 182 and 312 mg/kg(0.75) per day. Thus, Santa Ines tropic semi-arid hair lambs showed to be more responsive than F(1) Ideal x Ile de France temperate wool lambs to low quality fibrous diets. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigated: (a) the effects of intracerebroventricular (i.c.v.) injections of moxonidine (an alpha(2)-adrenergic and imidazoline receptor agonist) on the ingestion of water and NaCl induced by 24 h of water deprivation; (b) the effects of i.c.v. injection of moxonidine on central angiotensin II (ANG II)- and carbachol-induced water intake; (c) the effects of the pre-treatment with i.c.v, idazoxan (an alpha(2)-adrenergic and imidazoline receptor antagonist) and RX 821002 (a selective alpha(2)-adrenergic antagonist) on the antidipsogenic action of central moxonidine. Male Holtzman rats had stainless steel cannulas implanted in the lateral cerebral ventricle. Intracerebroventricular injection of moxonidine (5 and 20 nmol/1 mu l) reduced the ingestion of 1.5% NaCl solution (4.1 +/- 1.1 and 2.9 +/- 2.5 ml/2 h, respectively vs. control = 7.4 +/- 2.1 ml/2 h) and water intake (2.0 +/- 0.6 and 0.3 +/- 0.2 ml/h, respectively vs. control = 13.0 +/- 1.4 ml/h) induced by water deprivation, Intracerebroventricular moxonidine (5 nmol/1 mu l) also reduced i.c.v. ANG Ii-induced water intake (2.8 +/- 0.9 vs. control = 7.9 +/- 1.7 ml/1 h) and i.c.v. moxonidine (10 and 20 nmol/1 mu l) reduced i.c.v. carbachol-induced water intake (4.3 +/- 1.7 and 2.1 +/- 0.9, respectively vs. control = 9.2 +/- 1.0 ml/1 h). The pre-treatment with i.c.v. idazoxan (40 to 320 nmol/1 mu l) abolished the inhibitory effect of i.c.v, moxonidine on carbachol-induced water intake. Intracerebroventricular idazoxan (320 nmol/1 mu l) partially reduced the inhibitory effect of moxonidine on water deprivation-induced water intake and produced only a tendency to reduce the antidipsogenic effect of moxonidine on ANG Ii-induced water intake. RX 821002 (80 and 160 nmol/1 mu l) completely abolished the antidipsogenic action of moxonidine on ANG Ii-induced water intake. The results show that central injections c: moxonidine strongly inhibit water and NaCl ingestion. They also suggest the involvement of central alpha(2)-adrenergic receptors in the antidipsogenic action of moxonidine. (C) 1999 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of carbachol (80 nmol/mul) injection into the amygdaloid nuclear complex (AMG) on sodium appetite and water intake was studied in male Holtzman rats weighing 240-270 g. Twenty-five satiated rats and 38 water-deprived rats were used in the experiment on water intake. In the experiment on sodium intake, 19 rats were injected with atropine + carbachol and 9 rats with hexamethonium + carbachol. After carbachol injection into the AMG, water intake decreased in rats submitted to 30 h of water deprivation (10.28 +/- 1.04 ml/120 min vs 0.69 +/- 0.22 ml/120 min). The decrease in water intake was blocked by prior local injection of a tropine (20 nmol/1 mul)(11.66 +/- 1.46 ml/120 min vs 0.69 +/- 0.22 ml/120 min), but not of hexamethonium (30 nmol/1 mul), into the AMG. In water-deprived animals, carbachol injection into the AMG caused a decrease in sodium chloride intake (6.16 +/- 1.82 ml/h vs 0.88 +/- 0.54 ml/h) which was blocked by previous injection of hexamethonium but not of a tropine. These results suggest that the cholinergic system of the AMG plays a role in the control of water and salt intake.