153 resultados para Tillage systems
Nitrogen fertilization (15NH4NO3) of palisadegrass and residual effect on subsequent no-tillage corn
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of cover crops can produce large amounts of biomass, improving the cycling of nutrients, particularly nitrogen, promoting productivity gains and cost savings. Given this, the objective was to evaluate the use of N rates associated to cover crops grown in pre-harvest nutritional status, nitrogen accumulation and corn yield in both years. The experiment was conducted in an Oxisol with maize, no-tillage system. The experimental design was a randomized block, split plot with four replications. The main treatments were: six cropping systems (sun hemp, jack bean, lablab, millet, and velvet bean fallow) in secondary treatments: four doses of nitrogen (0, 60, 120 and 180 kg ha(-1) N). Corn yield was not affected by the type of coverage for pre-season, regardless of the nitrogen applied in the soil. Still, the use of nitrogen fertilizer in the soil promotes gains in grain yield in the first year of cultivation, regardless of the type of coverage in pre-season. In the first year (2006/2007) the species of coverage produced more biomass were velvet bean, jack bean, sun hemp and lablab, while in the second year (2007/08) were the sun hemp, millet, lablab, jack bean and velvet bean, respectively.
Resumo:
Agricultural management systems can alter the physical and biological soil quality, interfering with crop development. The objective of this study was to evaluate the physical and microbiological attributes of a Red Latosol, and its relationship to the biometric parameters of the common bean (Phaseolus vulgaris), irrigated and grown under two management systems (conventional tillage and direct seeding), in Campinas in the state of Sao Paulo, Brazil. The experimental design was of randomised blocks, with a split-plot arrangement for the management system and soil depth, analysed during the 2006/7 and 2007/8 harvest seasons, with 4 replications. The soil physical and microbiological attributes were evaluated at depths of 0.00-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.40 m. The following were determined for the crop: density, number of pods per plant, number of beans per pod, thousand seed weight, total weight of the shoots and harvest index. Direct seeding resulted in a lower soil physical quality at a depth of 0.00-0.05 m compared to conventional tillage, while the opposite occurred at a depth of 0.05-0.10 m. The direct seeding showed higher soil biological quality, mainly indicated by the microbial biomass nitrogen, basal respiration and metabolic quotient. The biometric parameters in the bean were higher under the direct seeding compared to conventional tillage.