187 resultados para Steam


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to analyze data from a Natural Electric Potential landfill type ditch located in Cordeirópolis (SP). The procedure measures initially involved the assembly and installation of an apparatus cables, sensors and drain geophysical measurements and flow rate of biogas in a ditch later filled by solid waste. Biogas is a product of degradation of organic matter in waste by the action of microorganisms in an anaerobic environment. Its features high methane content in the gas potentially usable as fuel in energy generation systems or steam. The study area is characterized by clayey soil composition change from the diabase sill correlated to the event Serra Geral Formation siltstones overlapping Tatuí with groundwater level site around 50m. The cables were installed vertically in parallel with drain gas manifold, which allowed the collection of data by the technique geophysical logging every 15 days over a period of eight months. For data analysis we used four parameters in the study, the closing time of the ditch, natural electric potential, the flow velocity of biogas and rain. With the tabulated data plots were constructed for each collection day showing values in the range of the cable is in contact with waste (200 cm - 400 cm) and range of the cable in contact with the soil (600 cm - 800 cm). Subsequently graphs were generated with the period of eight months to analyze the data tabulated. A statistical correlation data, which show the influence of rainfall on the production of biogas. The results were satisfactory and demonstrated the feasibility of the research method in studies for the feasibility analysis for the capture of biogas energy

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work evaluates the implementation of Lean Six Sigma into the Steam Turbine’s Blades Manufacturing Process, aiming to improve productivity, quality and operational efficiency. Therefore, several tools have been applied, such as VSM, Spaghetti Diagram, Ishikawa, Pareto, DMAIC, Benchmarking and Control Charts, seeking to propose process improvements, as well as Quality Indicators creation. It was obtained a significant waste reduction throughout the process, achieving a lead time reduction of 42% and 83,41% in transport. Also, were introduced the Lean Thinking concepts, such as pull production and Continuous material flow. At the same time, it was possible to calculate the process capability and the sigma level, evaluating and proposing some improvements

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the biggest environmental problems of today is the climate change. Experts affirm that this global warming is related to the greenhouse effect. Its causes are directly related to human activity, especially the use of fossil fuels. In this context, companies around the world are challenged to improve energy efficiency in order to reduce the environmental impact and work toward the so-called tripod of sustainable development that focuses on the social, economic and environmental aspects of a business strategy. The first step a company can make in this regard is to conduct an inventory of emissions of greenhouse gases (GHGs). The reduction of GHG emissions in a refinery can be achieved by replacing steam turbines with electric motors to drive big machines, this reduction is achieved by relieving the steam consumption for electric power available or purchased. An important aspect associated with the reduction of GHG emissions is the best performance of the Energy Intensity Index (ERI). The objective of this study was to analyze the feasibility of the blower motorization in the regenerative cycle of a fluidized catalytic cracking unit at a specific refinery. For development work, two methods were used, the initial screening and optimization scenarios with the help of software Butyl. The results indicate that after a certain cost of natural gas this substitution becomes favorable. In addition, there is a large reduction of CO2 emissions avoided by burning fuel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of microwave radiation on the sample preparation has been expanding increasingly in areas involving decomposition by wet and dry roads, fusion, extraction, acceleration of chemical reactions, for example. Currently, the use of microwave ovens for analytical purposes are recognized for having excellent performance for organic and inorganic samples. In the international market there are several kinds of microwaves oven which adapt the varied purposes, however yet with elevated prices which incapacitate your use as routine equipment in laboratory. Thus, many researchers have been choosing for developing own projects of microwaves oven production or to use domestic oven for the laboratory, with or without adaptations. For the evaluation of the proposed method was used in the Kjeldahl methodology for determining total nitrogen in samples of crude protein, using a domestic microwave oven and a digester pot made up in TeflonTM and distillation by steam. Were made to adapt and characterization of a domestic microwave oven, the confeccion vessel digester and the metal support for the vessel. The accuracy of the proposed method was confirmed by comparison of two methods, the standard method for conventional heating and by the proposed method, with heating by microwave radiation through the calculated values of relative standard deviation analysis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within the concepts of sustainability, energy audit magnified its importance in managing systems in industrial plants. Can reduce waste and save energy representative, the improvement and development of thermal and electrical systems can be very attractive to business. With the focus on a boiler generating steam, the energy audit aimed to increase efficiency and eliminate energy losses of the heat engine. The boiler in question is commonly called CO boiler because most of the calorific power provided comes from this. Using a fuel gas from the catalyst regeneration process, it has featured in the boiler power generation system of the refinery. Burning a mixture of gaseous components from discarded into the atmosphere, the heat engine can generate tons of steam just as the other boilers installed. The challenge was to work with this gas mixture and obtain maximum efficiency, reduce moisture and enjoy the warmth of the heat exchange have been studied and recommended. Every project, from evaluation of the variables in the composition of fuel gas, to the using of heat exchangers and refrigeration system are suitable for evaluation and improvements

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach to generating clean energy has been studied by several researchers, among which one can highlight the steam reforming of biogas. The Biogas is result of decomposition of organic matter and it hasn’t been availed in the global level, instead, the biogas has been burned in flare or discarded into the atmosphere providing damage to the environment. The generation of vector biogas energy can be realized through its steam reforming and this work examines briefly the types of digesters used for biogas generation, studying the process of steam reforming to generate hydrogen as energy vector, analyzing each step in detail, seeking to adapt its main features an ethanol reformer for a biogas reformer. Besides this it is estimated the yield of the reform process and the boiler efficiency for efficiency of the process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steam generation plants have several industrial applications, being important for the national and global energetic matrix. Operational knowledge of steam plants is extremely important to forming a Mechanical Engineer. The facilities from Faculty of Engineering of Guaratingueta have a no operated steam pilot plant, named Thermal Machine Lab. Nowadays, the Energy Department from the faculty cannot explore this lab for its classes, even being essential to consolidate the theoretical concepts with tests simulating industrial applications. The goal of this project was to restore the operational condition of equipment of steam laboratory by fixing the equipment, and creating operational scripts for them. In a close future this lab could be used for classes, research and other applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work is to study the incorporation of hydrogen production (Case A) and the process of gasification of sugarcane bagasse associated with combined cycle gas turbine and steam turbine (Case B) for Distillery Pioneers process. These technologies can be used to improve the energy supply in the sugarcane mill. Initially the processes for obtaining sugar and ethanol from sugarcane is discussed, with a theoretical introduction to hydrogen, the process of steam reforming and gasification of biomass (bagasse) by inserting a turbine associated with the recovery boiler gas. Subsequently makes up the energy and exergy analysis of the incorporation of the above technologies. In end stage makes it an ecological analysis considering or not the carbon cycle (photosynthesis), to determine the levels of emissions of pollutants, carbon dioxide equivalent, indicators of pollution and ecological efficiencies associated with technological developments proposed. It is concluded that hydrogen production by steam reforming of ethanol and gasification of bagasse are viable alternatives from the point of view of technical and environmental applications in the biofuels industry, contributing to the development of the sector in the country

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the growing world energy demand mainly from developing countries like Brazil, Russia, India and China, the search for efficient sources of energy becomes a challenge for the coming years. Among the most widely used alternative sources, biomass is the one that grows in a more pronounced way. This study will assess the real possibility of having it as a heat source in an Organic Rankine Cycle, which employ heat transfer fluids as working fluids instead of water. From a regional data collection in agricultural production and their potential rice production and the resulting husk was defined as more appropriate. The availability of husks together with an amount of eucalyptus wood, provided by a company in the region on a monthly basis, were analyzed, and the low participation of the wood was discarded by the thermal contribution of little significance. Based on this, it was established the calorific value of fuel for thermodynamic calculations and the cycle to be used. It was then carried out the choice of working fluid from the literature and their availability in the library of software used for the simulations, the Engineering Equation Solver - ESS. The fluid most appropriate for the burning of biomass, Octamethyltrisiloxane (OMTS), was not included in the software and so the R227ea and R134a were selected. After the initial parameters modeling definition, as condensing temperature, efficiency and live steam conditions, the simulations were performed, and only the R227ea remained within the feasible thermodynamic and technological ranges. With this fluid the turbine power output was 265.7 [kW] for a scenario of 24 hours/day burning, 800.3 [kW] to biomass burning for 8 hours/day and 2134 [kW] for burning only 3 hours/day. The thermal efficiency of the cycle remained in the range of 6%, and for plants operating with the most... (Complete Abstract click eletronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, increasing demand for energy has led to studies to increase the amount of electricity produced. Due to this fact, more and more boilers are becoming important sources of electricity generation. To raise the efficiency of energy generated in the boilers is necessary to raise the steam pressure and temperature to values previously unimaginable. The use of more resistant materials and maintenance practices and most appropriate operation made it possible. The objective of this study is to test the main types of failure in a chemical recovery boiler, in particular due to fatigue in the superheater, because it is a component subjected to high temperatures and thus more subject to different failures. In this manner this study aims to reduce the incidence of unscheduled maintenance shutdowns, increasing the operation time under appropriate conditions. Modeling performed in this study, the failure did not occur, because we considered only the mechanical stress. Under normal conditions, mechanical stress in combination with thermal stresses can cause cracks in the tubes due to cyclical stresses, leading to fatigue failure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gas turbine (GT) is known to have: low cost of capital over the amount of energy, high flexibility, high reliability, short delivery time, commissioning and commercial operation at the beginning and quick departure. The gas turbine is also recognized for its superior environmental performance, manifested in air pollution containment and reducing greenhouse gases (Mahi, 1994). Gas turbines in simple cycle mode (SC) have long been used by utilities to limited power generation peak. In addition, manufacturing facilities use gas turbines for power generation units on site, often in combination with the process of heat production, such as hot water and steam process. In recent years, the performance of industrial gas turbines has been improved due to significant investments in research and development, in terms of fuel to electricity conversion efficiency, plant capacity, availability and reliability. The greater availability of energy resources such as natural gas (NG), the significant reduction of capital costs and the introduction of advanced cycles, have also been a success factor for the increased use of gas turbines to load applications base (Poulikas, 2004). Open Cycle Gas Turbine with a greater degree of heat to the atmosphere may alternatively be used to produce additional electricity using a steam cycle, or to compose a cogeneration process. The combined cycle (CC) uses the heat from the gas turbine exhaust gas to increase the power output and increase the overall efficiency of more than 50% second (Najjar, 2001). The initial discovery of these cycles in the commercial power generation market was possible due to the development of the gas turbine. Only from the 1970s that gas turbine inlet temperature and therefore the exhaust gas temperature was sufficiently high to allow a better efficiency in the combined cycle ... (Complete Abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work studies the incorporation of new technologies in the sugarcane sector. Are considered the ethanol steam reforming and the gasification of sugarcane bagasse(by-product) processes associated with combined cycle systems (Gas Turbine + Steam Turbine), aggregating hydrogen production and increased electricity supply in the sector, respectively. To verify the technical feasibility of the incorporation processes was performed a thermodynamic analysis, considering data from a typical Brazilian Sugar Cane Industry. In another step the economic viability study of the hydrogen production process was made, with consideration on hydrated and anhydrous ethanol steam reform, comparing the cost of hydrogen production. Also considered studies of economic engineering of the gasification process and the generation of electricity associated. As conclusions, it follows that the ethanol steam reforming is a great alternative for hydrogen production, presenting production cost relatively low, especially when is considered the steam reforming of hydrated ethanol. For the gasification process associated with combined cycle, can be observed an increase of 8.56 times of the electricity production in the sugar cane industry, indicating a positive annual saving when the sales price of the supply electricity is greater than 0.070 US$/kWh. Finally it can be concluded that the incorporation of these new processes allow greater profitability and operational flexibility of Brazilian sugarcane mills

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In contemporary industrial, welding processes are widely used, this is the most important process of joining metals used industrially. The welding can be used to build simple structures, like doors and gates for instance, in the same way can be used in situations of high responsibility, such as the nuclear industry and oil industry. Dissimilar welding is a case of welded joints, is characterized by the junction between different materials, for this case, stainless steel and carbon steel that are widely used in steam lines, power plants, nuclear reactors, petrochemical plants. Because their different mechanical and corrosive properties, the join, stainless steel with carbon steel, not only meets environmental requirements and also reduces cost. By using penetrating liquid tests, macrograph, hardness and tensile test was compared the possibility of replacing the current use of 309 rods as filler metal in dissimilar welding between carbon steel and stainless steel by add-on material carbon steel essentially, in this case E7018 coated electrode was used, but without the coating. After analysis of the results and for comparison, was proposed with some certainty that it is possible to replace the addition of materials, thus leading economy in this process widely used in the modern industry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia Animal - FEIS