177 resultados para Reator aeronáutico
Resumo:
This work aimed to develop a biological system for removal of ammonia nitrogen operating at low concentrations of dissolved oxygen. Thus, a biological upflow vertical reactor was built, in which the affluent pass through the support media until the top. Sludge from an anaerobic stabilization pond of a slaughterhouse unit in the city of Presidente Prudente - SP was used as inoculum. Initially the system operated in batch and afterwards in a continuous flow with different HRT. For feeding the reactor, an initial phases was adopted a synthetic culture media, described by Martins (2007), in order to establish the ideal conditions for the development of Anammox bacteria and subsequently, submitted to the system a slugde effluent of slaughterhouse. The results showed significant removal efficiency of N-NH4+, especially in the phase without recirculation of culture media, with an average of 71% removal, with the proportion of removal of N-NH4 +:N-NO2- average 1: 1,69. For the period of operation with effluent from the slaughterhouse, were not obtained satisfactory results, without confirmation of the proliferation of Anammox bacteria in the system, due to the high presences of organic matter in the same confirmed by high concentrations of COD
Resumo:
This work approaches, in a simplified manner, the analysis of an aircraft’s trajectory through the 3 main flight phases, climb, cruise and descent, related to fuel consumption and elapsed time. From this analysis is developed a tool that aims optimize the flight planning operational procedure, providing an altitude that comply with fuel saving during the trip, or minimizes the trip time. The use of any altitude is an operator’s decision, that aims comply with their operational needs of each trip, getting the results provided by the tool as a primary approach to the flight profile that also bring up economics aspects of each possibility of decision to be taken. Since the aeronautical Market has singular problems, as the flight altitude optimization, there is the need to solutions very customized that many times can not attend every restriction for each operator and its related kind of operation. When we talk about executive aircrafts, is possible to note that its operators does not have enough engineering and logistic support, when compared to huge airlines companies, to analyze all exceptions of each singular operation, creating many times wastes that can be avoiding with a tool described herein in this work
Resumo:
The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Cassava wastewater, generated during cassava processing, is a highly polluting and toxic waste. This study aimed to assess the relationship of cassava treatment efficiency in two aerobic sequencing batch reactors, cylindrical plastics (31cm height x 9cm diameter), with 2.0 liters capacity and 1.5 liters of work volume, a ratio of diameter and height of the liquid 1:2.5, with a running time of 24 hours and stoppage aeration for 16 hours with average feed of 2,500 and 6,000 mg COD. L -1. COD, pH, SVI and F/M were analyzed. The results obtained in the two reactors showed an average reduction of 94.1% and 76.8% organic content, respectively; pH values showed a rising in the output pH values compared to entry ones; SVI values obtained: 54.1 mL/g, 99.3 mL/g, respectively in a F/M ratio values worked out of 0.4 d-1 and 1,1 d-1 , respectively. The results demonstrated that the process has generated considerable saving in energy consumption compared to traditional continuous systems, was efficient and did not affect the efficiency overly of the reactor.
Resumo:
The cassava wastewater, generated during the cassava processing, is a pollutant and toxic waste. This study compared the efficiency of the cassava wastewater treatment in three batch aerobic systems with a ru1nning time of 24 hours, and aeration stoppage of 12h with 2,500, 6,000 and 10,000 mg COD L-1 . The systems were evaluated for COD, pH, SVI and F/M. The results showed that the reactor with aeration stoppage for 12 hours, with 2,500 mg COD L-1 , presented the best reduction in a process with considerable energy consumption saving compared to traditional continuous systems.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
The industry generally has sought materials with high mechanical resistance, low density, thermal stability and corrosion resistance. In the aerospace industry, for example, the use of aluminum alloys, such as Al 2024-T351 and Al 7075-T7351, have become essential. However, the use of these materials often do not resulted in a satisfactory performance of the component, since the presence of cracks can cause total rupture of the component, even with a tension below the yield stress of the material, unexpectedly. In this work, these aluminum alloys were analyzed and samples were modeled by the finite element method. Moreover, in the models were applied two different types of cracks, central and edge crack, a vertical force was applied to result in a tension 70% of the yield stress of the material analyzed. Through stress asymptotic distribution in the region near the crack tip were calculated the values of the stress intensity factors for each crack length, after the stress intensity factors characterized were compared graphically with the values of fracture toughness found in the available literature
Resumo:
Radiopharmaceuticals are substances marked with radionuclides that can be used for detection and treatment of cancer, infections and inflammatory diseases. They emit several types of radiation through different decay routes, each radioisotope with its specific properties and uses. They can usually be produced from several different materials, by bombardment with particle beams in a nuclear research reactor or cyclotron, depending on their characteristics. Brazil has four public institutions which produce - or import - and distribute radiopharmaceuticals to hospitals and clinics throughout its territory. The largest such institution, Ipen, distributes 97% of radiopharmaceuticals used in the country. Some radiopharmaceuticals decay very quickly, meaning they must be produced and quickly administered to the patient in the same location, presenting a logistical challenge. Nuclear medicine in Brazil is a promising field and has been steadily growing, although rigid laws and a lack of qualified work force hinder Research and Development efforts for new radiopharmaceuticals. The construction of a new nuclear research reactor, in 2016, should generate self-sufficiency and economy in radiopharmaceutical production and avoid a future crisis in the supply of technetium-99m, the most important radioisotope, used in over 80% of procedures with radiopharmaceuticals.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
This paper provides an overview of the reality of Colonial Corps created in the early twentieth century, in São Paulo, based on a cut of the genesis of the municipality of Peixoto Hawk when he was one of the centers for the accommodation of European immigrants; well as in parallel to the phase coronelismo intensified in the area. From this historical assumption, following a brief contemporary approach, already in the XXI century, in order to provoke a debate that can aggregate relevant contribution to the strategic purposes of the locality, including inserting the new reality imposed by the deployment of the Aerospace Hub in the town, represented by installation of Empresa Brasileira de Aeronautica S / A - Embraer. It takes into account, thus the set of their social and cultural phenomena occurred and developed over time (diachronic); based on an analysis for educational planning, particularly in developing and implementing public policies and projects to new propositions for improvement Local education at different levels.
Resumo:
Pós-graduação em Química - IQ
Resumo:
This study aimed to develop, implement and evaluate the performance of a new type of bioreactor for anaerobic treatment of wastewater using different filling materials like trickling filters post-reactor. This bioreactor has mixed characteristics of the UASB reactors and horizontal flow from the point of view of removal of BOD (Biochemical Oxygen Demand) ssed (settled solids), TS (Total Solids), SS (Suspended Solid), SD (Dissolved Solids) and turbidity. The experimental model consists of a bioreactor with a volume of 12 m³, 2/3 filled by fluidized bed and 1/3 for fixed. The fluidized bed is made of polystyrene plates used as a system percolation and compartmentalized trickling filters, where each compartment was filled with a support medium with different characteristics (gravel number 4, plastic rings of polystyrene, PET and HDPE) . In addition, the output of a filter system was installed three entries filled with activated carbon. The bioreactor was installed in private residence in the city of Igarapava-SP (20° 02'40.18"S and 47° 45'01.36" W). The system was highly efficient as the removal of organic contaminant load 92% on average reducing the BOD, a significant result when compared to other anaerobic systems. For the other parameters, the mean reduction was 96% for turbidity, 99% ssed, 67.5% ST, 57% SD and 88% of SS. As for its operation the system was capable of operating in continuous flow without the need for maintenance during the entire period of evaluation and without energy, as it operates taking advantage of the natural slope of the terrain where it is installed. The environmental impacts were minimized due to the preservation of local vegetation allowing the ecosystem to remain unchanged beyond the prototype was completely sealed preventing exhalation of odors and therefore not causing inconvenience to neighboring populations. Given these facts it was concluded that the prototype is shown to be highly feasible deployed as a new alternative for treatment of sewage in rural and urban settings (individual homes, condos, farms, ranches, etc.) Due to ease of design and operability, and sustainability at all stages of execution.