268 resultados para Physical and chemical traits of soil
Resumo:
BaxSr1-xTiO3 (x = 0.6) (BST) thin films were successfully prepared on a Pt(111)/TiO2/SiO2/Si(100) substrate by spin coating, using the polymeric precursor method. BST films with a perovskite single phase were obtained after heat treatment at 700 degrees C. The multilayer BST thin films had a granular structure will a grain size of approximately 60 nm. A 480-nm-thick film was obtained by carrying out five cycles of the spin-coating/heating process. Scanning electron microscopy and atomic force microscopy analyses showed that the thin films had a smooth, dense, crack-free surface with low surface roughness (3.6 nm). At room temperature and at a frequency of 100 kHz, the dielectric constant and the dissipation factor were, respectively, 748 and 0.042. The high dielectric constant value was due to the high microstructural quality and chemical homogeneity of the thin films obtained by the polymeric precursor method.
Resumo:
Envenomation by arachnids of the genus Loxosceles leads to local dermonecrosis and serious systemic toxicity mainly induced by sphingomyelinases D (SMase D). These enzymes catalyze the hydrolysis of sphingomyelin resulting in the formation of ceramide-phosphate and choline as well as the cleavage of lysophosphatidyl choline generating the lipid mediator lysophosphatidic acid. We have, previously, cloned and expressed two functional SMase D isoforms, named P1 and P2, from Loxosceles intertnedia venom and comparative protein sequence analysis revealed that they are highly homologous to SMase I from Loxosceles laeta which folds to form an (alpha/beta)(8) barrel. In order to further characterize these proteins, pH dependence kinetic experiments and chemical modification of the two active SMases D isoforms were performed. We show here that the amino acids involved in catalysis and in the metal ion binding sites are strictly conserved in the SMase D isoforms from L. intermedia. However, the kinetic studies indicate that SMase P1 hydrolyzes sphingomyelin less efficiently than P2, which can be attributed to a substitution at position 203 (Pro-Leu) and local amino acid substitutions in the hydrophobic channel that could probably play a role in the substrate recognition and binding. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Ferroelectric PbTiO3 thin films were successfully prepared on a Pt(111)Ti/SiO2/Si(100) substrate for the first time by spin coating, using the polymeric precursor method. X-ray diffraction patterns of the films indicate that they are polycrystalline in nature. This method allows low temperature (500 degrees C) synthesis and high electrical properties. The multilayer PbTiO3 thin films were granular in structure with a grain size of approximately 110-120 nm. A 380-nm-thick film was obtained by carrying out four cycles of the spin-coating/heating process. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed the surface of these thin films to be smooth, dense and crack-free with low surface roughness (=3.4 nm). At room temperature and at a frequency of 100 kHz, the dielectric constant and the dissipation factor were, respectively, 570 and 0.016. The C-V characteristics of perovskite thin film prepared at low temperature show normal ferrolectric behavior. The remanent polarization and coercive field for the films deposited were 13.62 mu C/cm(2) and 121.43 kV/cm, respectively. The high electrical property values are attributed to the excellent microstrutural quality and chemical homogeneity of thin films obtained by the polymeric precursor method. (C) 2000 Elsevier B.V. S.A. All rights reserved.
Resumo:
The effect of nickel from soluble NiCl2 on Cu-Zn superoxide dismutase (SOD) activity, as well as on rate of nitro blue tetrazolium reduction, was studied in vitro since lipid peroxidation has been implicated in cell damage by nickel insoluble compounds, whose toxicity and carcinogenicity are well established. The physical and chemical nature of nickel compounds is one of the key determinations of its toxicity. Soluble nickel freely enter cells, but is just as readily excreted reducing the opportunity for production of lipid damage. Nickel from NiCl2 strongly activated SOD activity. In vitro addition of nickel chloride to a crude lung preparation altered the KM for SOD without changing the Vmax. Nickel chloride produced increased enzyme affinity to the substrate, because decreased (O2-) concentration that yields half-maximal velocity. The combination of nickel and SOD may contribute to stabilization of the particular conformation of SOD responsible for maximal catalytically activity.
Resumo:
Introduction. Breeding studies for acerola (Malpighia glabra) improvement aim at obtaining plants that produce fruits with uniform chemical and physical attributes, including high levels of vitamin C, which can provision the market with fresh fruit and frozen pulp. High variability in fruit quality is observed in Brazilian acerola crops, especially those propagated by seeds. In this context, the objective of our research was to evaluate the physical and chemical characteristics of Brazilian acerola genotype fruits. Materials and methods. Sixteen acerola genotypes were studied in Jaboticabal, São Paulo State, Brazil. A completely randomized design with sixteen treatments and six replications was adopted. Each treatment was represented by one genotype. Several parameters related to fruit quality, such as width, length, weight, pulp percentage, soluble solids (SS), titratable acidity (TA), [SS / TA] ratio and vitamin C content, were evaluated in fruits of the acerola genotypes. The results were submitted to variance analyses, the Tukey test and cluster analysis. Results and discussion. There was a statistical difference between the acerola genotypes studied. Three of them stood out as natural sources of vitamin C. In spite of fruit size, two acerola genotypes were found to have potential for fresh fruit production. In a general form, genotypes that presented a high [SS / TA] ratio had low vitamin C content. Conclusion. The acerola genotypes studied in Jaboticabal presented high variability, forming eleven groups in relation to fruit quality parameters. © 2007 Cirad/EDP Sciences All rights reserved.
Resumo:
The objective of this research was to evaluate the physical and chemical conditions of revegetated subsoil in degraded areas in a Cerrado biome and to verify which plants promote better conditions for soil recovery. The research was conducted in the remaining area of the hydroelectrical plant site at Ilha Solteira (SP). The experimental design was a completely randomized with five treatments and three replications. The treatments consisted of: natural regeneration area, brachiaria area, Pinus sp. area, exposed soil area and Cerrado grassland (used as control). The following soil characteristics were appraised: porosity; density, stability of aggregates, infiltration rate, temperature, exchangeable cations, organic matter, pH and potential acidity. The results show that Pinus is not a good species to recover the chemical attributes of the subsoil. The revegetated areas need to be improved in their physical attributes to allow a better development of the vegetation. Brachiaria and the natural regeneration were the most promising treatments, presenting results similar to natural Cerrado.
Resumo:
The yield and chemical composition of essential oils from leaves of Ocimum selloi B. submitted to organic and mineral fertilization, obtained by hydrodistillation and supercritical fluid extraction (SFE) were compared. Essential oil was extracted in a Clevenger-type apparatus for 2 h 30 min and analyzed by GC-MS (Shimadzu, QP 5050-DB-5 capillary column - 30 m × 0.25 mm × 0.25 μm). Carrier gas was helium (1.7 ml/min); split ratio: 1:30. Temperature program: 50°C, rising to 180°C at 5°C/min, 180°C, rising to 280°C at 10°C/min. Injector temperature: 240°C and detector temperature: 230°C. Identifications of chemical compounds were made by matching their mass spectra and Kovat's indices (IK) values with known compounds reported in the literature. An Applied Separations-apparatus (Speed SFE, model 7071, Allentown, PA, EUA) was used for SFE extractions. They were conducted at pressure 200 bar and temperature 30°C (20 min in static mode and 40 min in dynamic mode). The supercritical CO2 flow rate was (6.8±0.7)×10-5 kg-CO2/s. The essential oil collected was immersed in ethylene glycol bath (5°C). The yield of essential oils obtained by SFE was larger than hydrodistillation in both fertilization treatments (279 and 333% for organic and mineral fertilizations, respectively). There were no differences between the fertilization treatments. The amount of the volatile components showed by GC-MS chromatogram was highest in the essential oil obtained by hydrodistillation than SFE. The main volatile constituents of the essential oils were trans-anethole (Hydrodistillation: organic - 52.4%; mineral - 55.0%/ SFE: Hydrodistillation - 62.8%; mineral - 66.8%) and methyl-chavicol (Hydrodistillation: organic - 37.3%; mineral - 38.3%/ SFE: organic - 8.4%; mineral - 4.3%). A reduction of methyl-chavicol relative proportion of essential oil obtained by SFE was observed. Cys-anethole, α-copaene, trans-cariofilene, germacrene-D, β-selinene, biciclogermacrene and spathulenol were expressed only in hydrodistillation. The extraction of essential oil by SFE presented larger yield of essential oil than hydrodistillation technique, presenting, however, these essential oils, different phytochemical profiles.
Resumo:
This paper offers the physical and chemical characterization of a new dextran produced by Leuconostoc mesenteroides FT045B. The chemical structure was determined by Fourier Transform Infrared spectroscopy and 1H Nuclear Magnetic Resonance spectroscopy. The dextran was hydrolyzed by endodextranase; the products were analyzed using thin layer chromatography and compared with those of commercial B-512F dextran. The number-average molecular weight and degree of polymerization of the FT045B dextran were determined by the measurement of the reducing value using the copper bicinchoninate method and the measurement of total carbohydrate using the phenol-sulfuric acid method. The data revealed that the structure of the dextran synthesized by FT045B dextran sucrase is composed of d-glucose residues, containing 97.9% α-(1,6) linkages in the main chains and 2.1% α-(1,3) branch linkages compared with the commercial B-512F dextran, which has 95% α-(1,6) linkages in the main chains and 5% α-(1,3) branch linkages. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Physical and chemical adsorption of CO 2 on ZnO surfaces were studied by means of two different implementations of periodic density functional theory. Adsorption energies were computed and compared to values in the literature. In particular, it was found that the calculated equilibrium structure and internuclear distances are in agreement with previous work. CO 2 adsorption was analyzed by inspection of the density of states and electron localization function. Valence bands, band gap and final states of adsorbed CO 2 were investigated and the effect of atomic displacements analyzed. The partial density of states (PDOS) of chemical adsorption of CO 2 on the ZnO(0001) surface show that the p orbitals of CO 2 were mixed with the ZnO valence band state appearing at the top of the valence band and in regions of low-energy conduction band. [Figure not available: see fulltext.] © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Application of nanoscale materials in photovoltaic and photocatalysis devices and photosensors are dramatically affected by surface morphology of nanoparticles, which plays a fundamental role in the understanding of the physical and chemical properties of nanoscale materials. Zinc oxide nanoparticles with an average size of 20 nm were obtained by the use of a sonochemical technique. X-ray diffraction (XRD) associated to Rietveld refinements and transmission electron microscopy (TEM) were used to study structural and morphological characteristics of the samples. An amorphous shell approximately 10 nm thick was observed in the ultrasonically treated sample, and a large reduction in particle size and changes in the lattice parameters were also observed. © 2012 Elsevier B.V. All rights reserved.
Resumo:
a-C:H films were grown by plasma-enhanced chemical vapor deposition in atmospheres composed by 30 % of acetylene and 70 % of argon. Radiofrequency signal (RF) was supplied to the sample holder to generate the depositing plasmas. Deposition time and pressure were chosen 300 s and 9.5 Pa, respectively, while the excitation power changed from 5 to 125 W. The films were exposed to a post-deposition treatment during 300 s in RF-plasmas (13.56 MHz, 70 W) excited from 13.33 Pa of SF6. Raman and X-ray photoelectron spectroscopy were used to evaluate the microstructure and chemical composition of the films. The thickness was measured by perfilometry. Hardness and friction coefficient were determined from nanoindentation and risk tests, respectively. With increasing power, the film thickness reduced, but a further shrinkage occurred upon the fluorination process. After that, the molecular structure was observed to vary with deposition power. Fluorine was detected in all samples replacing H atoms. Consistently with the elevation in the proportion of C atoms with sp3 hybridization, hardness increased from 2 to 18 GPa. Friction coefficient also increased with power due to the generation of dangling bonds during the fluorination process. © 2012 Springer Science+Business Media, LLC.
Resumo:
Changes to the structure of the phytoplankton community and to the physical and chemical variables of the water were investigated in oxbow lakes with different levels of connection to a tropical river and subject to annual hydrological pulse variations. The selected lentic environments are located at the mouth region of the main tributary in a reservoir built for water storage and electric power generation. The temporal variation of phytoplankton in the studied lentic environments can be attributed mainly to the hydrological level of the river. A similar variation pattern of the ecological attributes was observed in the structure of the phytoplankton community in the connected lakes and Paranapanema River, evidencing the high degree of association that the lacustrine systems maintain with the river. The highest values of richness and diversity for connected environments were observed at the end of the emptying period and in the drought. However, considering the isolated lake, the highest values of these attributes were recorded during the flooding period. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
The Rio Preto Project, developed by the extinct Brazilian nuclear state company, Nuclebrás, during the late 70s and early 80s, consisted of basic geological mapping and radiometric characterization by aerogeophysical gamma-ray spectrometry, without channel discrimination, of a surface area of 650 km2 located to the west of the Chapada dos Veadeiros National Park on the northeastern of Goiás State, Brazil, including the confluence area of Claro and Preto Rivers. Additionally, the natural radioelements U, Th and 40K were determined by gamma-ray spectrometry in 300 rock samples from cores of the Rio Preto Project area. The tests were conducted at LABIDRO-Isotopes and Hydrochemistry Laboratory of the Departament of Petrology and Metallogeny (DPM) of the Institute of Geosciences and Exact Sciences, UNESP, in Rio Claro, SP, Brazil. This paper reports the results of petrographic characterization and chemical analyses of major oxides (SiO2, TiO2, Al2O3, Fe2O3, MgO, MnO, K2O, Na2O, CaO and P2O5) for all samples used to determine the natural radioelements present in the region. The organic matter content results obtained by colorimetry are also reported for selected cores of different lithotypes in order to investigate the possible relationship between graphite and the radioelements uranium and thorium. Finally, uranium content and 234U/238U activity ratio data for selected samples of schists and gneisses of the Lower Member of the Ticunzal Formation suggest the influence of weathering processes in the area. © 2012 Sociedade Brasileira de Geofísica.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV