197 resultados para Nonlinear programming problem


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with an energy pumping that occurs in a (MEMS) Gyroscope nonlinear dynamical system, modeled with a proof mass constrained to move in a plane with two resonant modes, which are nominally orthogonal. The two modes are ideally coupled only by the rotation of the gyro about the plane's normal vector. We also developed a linear optimal control design for reducing the oscillatory movement of the nonlinear systems to a stable point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the behavior of solutions of nonlinear elliptic equations with nonlinear boundary conditions of type partial derivative u/partial derivative n + g( x, u) = 0 when the boundary of the domain varies very rapidly. We show that the limit boundary condition is given by partial derivative u/partial derivative n+gamma(x) g(x, u) = 0, where gamma(x) is a factor related to the oscillations of the boundary at point x. For the case where we have a Lipschitz deformation of the boundary,. is a bounded function and we show the convergence of the solutions in H-1 and C-alpha norms and the convergence of the eigenvalues and eigenfunctions of the linearization around the solutions. If, moreover, a solution of the limit problem is hyperbolic, then we show that the perturbed equation has one and only one solution nearby.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a loads transportation system in platforms or suspended by cables is considered. It is a monorail device and is modeled as an inverted pendulum built on a car driven by a dc motor the governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the dc motor and the dynamical system, that is, we have a so called nonideal periodic problem. The problem is analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, we also analyze the problem quantitatively using the Floquet multipliers technique. Finally, we devise a control for the studied nonideal problem. The method that was used for analysis and control of this nonideal periodic system is based on the Chebyshev polynomial exponsion, the Picard iterative method, and the Lyapunov-Floquet transformation (L-F transformation). We call it Sinha's theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A body of research has developed within the context of nonlinear signal and image processing that deals with the automatic, statistical design of digital window-based filters. Based on pairs of ideal and observed signals, a filter is designed in an effort to minimize the error between the ideal and filtered signals. The goodness of an optimal filter depends on the relation between the ideal and observed signals, but the goodness of a designed filter also depends on the amount of sample data from which it is designed. In order to lessen the design cost, a filter is often chosen from a given class of filters, thereby constraining the optimization and increasing the error of the optimal filter. To a great extent, the problem of filter design concerns striking the correct balance between the degree of constraint and the design cost. From a different perspective and in a different context, the problem of constraint versus sample size has been a major focus of study within the theory of pattern recognition. This paper discusses the design problem for nonlinear signal processing, shows how the issue naturally transitions into pattern recognition, and then provides a review of salient related pattern-recognition theory. In particular, it discusses classification rules, constrained classification, the Vapnik-Chervonenkis theory, and implications of that theory for morphological classifiers and neural networks. The paper closes by discussing some design approaches developed for nonlinear signal processing, and how the nature of these naturally lead to a decomposition of the error of a designed filter into a sum of the following components: the Bayes error of the unconstrained optimal filter, the cost of constraint, the cost of reducing complexity by compressing the original signal distribution, the design cost, and the contribution of prior knowledge to a decrease in the error. The main purpose of the paper is to present fundamental principles of pattern recognition theory within the framework of active research in nonlinear signal processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we examine an inverse heat convection problem of estimating unknown parameters of a parameterized variable boundary heat flux. The physical problem is a hydrodynamically developed, thermally developing, three-dimensional steady state laminar flow of a Newtonian fluid inside a circular sector duct, insulated in the flat walls and subject to unknown wall heat flux at the curved wall. Results are presented for polynomial and sinusoidal trial functions, and the unknown parameters as well as surface heat fluxes are determined. Depending on the nature of the flow, on the position of experimental points the inverse problem sometimes could not be solved. Therefore, an identification condition is defined to specify a condition under which the inverse problem can be solved. Once the parameters have been computed it is possible to obtain the statistical significance of the inverse problem solution. Therefore, approximate confidence bounds based on standard statistical linear procedure, for the estimated parameters, are analyzed and presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural networks consist of highly interconnected and parallel nonlinear processing elements that are shown to be extremely effective in computation. This paper presents an architecture of recurrent neural net-works that can be used to solve several classes of optimization problems. More specifically, a modified Hopfield network is developed and its inter-nal parameters are computed explicitly using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points, which represent a solution of the problem considered. The problems that can be treated by the proposed approach include combinatorial optimiza-tion problems, dynamic programming problems, and nonlinear optimization problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an adaptation of the dual-affine interior point method for the surface flatness problem. In order to determine how flat a surface is, one should find two parallel planes so that the surface is between them and they are as close together as possible. This problem is equivalent to the problem of solving inconsistent linear systems in terms of Tchebyshev's norm. An algorithm is proposed and results are presented and compared with others published in the literature. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase of computing power of the microcomputers has stimulated the building of direct manipulation interfaces that allow graphical representation of Linear Programming (LP) models. This work discusses the components of such a graphical interface as the basis for a system to assist users in the process of formulating LP problems. In essence, this work proposes a methodology which considers the modelling task as divided into three stages which are specification of the Data Model, the Conceptual Model and the LP Model. The necessity for using Artificial Intelligence techniques in the problem conceptualisation and to help the model formulation task is illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider a vector optimization problem where all functions involved are defined on Banach spaces. We obtain necessary and sufficient criteria for optimality in the form of Karush-Kuhn-Tucker conditions. We also introduce a nonsmooth dual problem and provide duality theorems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, we improve a numerical method, developed to solve the Gross-Pitaevkii nonlinear Schrödinger equation. A particular scaling is used in the equation, which permits us to evaluate the wave-function normalization after the numerical solution. We have a two-point boundary value problem, where the second point is taken at infinity. The differential equation is solved using the shooting method and Runge-Kutta integration method, requiring that the asymptotic constants, for the function and its derivative, be equal for large distances. In order to obtain fast convergence, the secant method is used. © 1999 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel barrier method using artificial neural networks to solve robust parameter estimation problems for nonlinear model with unknown-but-bounded errors and uncertainties. This problem can be represented by a typical constrained optimization problem. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.