174 resultados para Multilayer perceptron neural networks
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biociências - FCLAS
Resumo:
Em geral, estruturas espaciais e manipuladores robóticos leves têm uma característica similar e inerente que é a flexibilidade. Esta característica torna a dinâmica do sistema muito mais complexa e com maiores dificuldades para a análise de estabilidade e controle. Então, braços robóticos bastantes leves, com velocidade elevada e potencia limitada devem considerar o controle de vibração causada pela flexibilidade. Por este motivo, uma estratégia de controle é desejada não somente para o controle do modo rígido mas também que seja capaz de controlar os modos de vibração do braço robótico flexível. Também, redes neurais artificiais (RNA) são identificadas como uma subespecialidade de inteligência artificial. Constituem atualmente uma teoria para o estudo de fenômenos complexos e representam uma nova ferramenta na tecnologia de processamento de informação, por possuírem características como processamento paralelo, capacidade de aprendizagem, mapeamento não-linear e capacidade de generalização. Assim, neste estudo utilizam-se RNA na identificação e controle do braço robótico com elos flexíveis. Esta tese apresenta a modelagem dinâmica de braços robóticos com elos flexíveis, 1D no plano horizontal e 2D no plano vertical com ação da gravidade, respectivamente. Modelos dinâmicos reduzidos são obtidos pelo formalismo de Newton-Euler, e utiliza-se o método dos elementos finitos (MEF) na discretização dos deslocamentos elásticos baseado na teoria elementar da viga. Além disso, duas estratégias de controle têm sido desenvolvidas com a finalidade de eliminar as vibrações devido à flexibilidade do braço robótico com elos flexíveis. Primeiro, utilizase um controlador neural feedforward (NFF) na obtenção da dinâmica inversa do braço robótico flexível e o calculo do torque da junta. E segundo, para obter precisão no posicionamento... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
The present paper introduces a new model of fuzzy neuron, one which increases the computational power of the artificial neuron, turning it also into a symbolic processing device. This model proposes the synapsis to be symbolically and numerically defined, by means of the assignment of tokens to the presynaptic and postsynaptic neurons. The matching or concatenation compatibility between these tokens is used to decided about the possible connections among neurons of a given net. The strength of the compatible synapsis is made dependent on the amount of the available presynaptic and post synaptic tokens. The symbolic and numeric processing capacity of the new fuzzy neuron is used here to build a neural net (JARGON) to disclose the existing knowledge in natural language data bases such as medical files, set of interviews, and reports about engineering operations.