409 resultados para Mott Insulators
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The influence of hydrogen charging into a quenched and tempered boron steel membrane electrode (SAE 10B22) was studied using borate buffer (pH 8.4) and NaOH solutions (pH 12.7), with or without the addition of 0.01 M EDTA. At the hydrogen input side, hydrogen charging influenced cyclic voltammograms increasing the anodic charge of iron(II) hydroxide formation, and decreasing the donor density of passive films. These results suggest that the hydrogen ingress caused instability of metallic surface, increasing the surface area activity. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
SnO2 ceramics doped with ZnO and WO3 were prepared by mixed oxide method. The effect of ZnO and WO3 additives could be explained by the substitution of Sn4+ by Zn2+ and W6+. The addition of WO3 inhibits the grain growth due to the segregation of SnZnWO8 and ZnWO6 at the grain boundaries without strong influence on the densification process. The electrical characterization (log E x log J) shows that the ternary system SnO2-ZnO-WO3 exhibits a very high resistivity of around 10(14) Omega M. Independently of the WO3 concentration, the electrical conductivity of the Sn02-ZnO-WO3 system is always lower than that of the undoped tin dioxide. (C) 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
This text discusses about advantageous, powerful and limitations of admittance and dielectric spectroscopy in the characterization of polycrystalline semiconductors. In the context of polycrystalline semiconductors or dielectric materials, the admittance or dielectric frequency response analyses are shown to be sometimes more useful than impedance spectra analysis, mainly because information on the capacitances or deep trap states are possible to be monitored from admittance or dielectric spectra as a function of dopant concentration or annealing effects. The majority of examples of the application of admittance or dielectric analysis approach were here based on SnO2- and ZnO-based polycrystalline semiconductors devices presenting nonohmic properties. Examples of how to perform the characterization of Schottky barrier in such devices are clearly depicted. The approach is based on findings of the true Mott-Schottky pattern of the barrier by extracting the grain boundary capacitance value from complex capacitance diagram analysis. The equivalent circuit of such kind of devices is mainly consistent with the existence of three parallel elements: the high-frequency limit related to grain boundary capacitances, the complex incremental capacitance at intermediate frequency related to the deep trap relaxation and finally at low frequency region the manifestation of the conductance term representing the dc conductance of the multi-junction device. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The conductivity of H2SiF6-doped emeraldine polymers is studied as a function of temperature in the range 50 less than or equal to T less than or equal to 180 K. The dopant concentration of the samples varies between 0.1 M and 1.0 M. The temperature dependence of the do electrical conductivity gives evidence for a transport mechanism based on variable-range hopping in three dimensions. Using Mott's formula for the de conductivity, physically meaningful values of the density of states at the Fermi energy, the hopping energy and hopping distance are calculated.
Resumo:
The polymer surface degradation and/or modification evolution of Teflon FEP and Mylar C films caused by a low energy electron beam were analyzed using a new method that consists in measuring the second crossover energy shift in the electronic emission curve. Upon prolonged irradiation, the second crossover energy shifts irreversibly to lower values in Teflon FEP but to higher values in Mylar C, indicating distinct mechanisms of surface degradation for the two polymers. The method represents a relatively inexpensive way to monitor early stages of surface degradation since the secondary electron emission comes from a maximum depth below the geometric surface of 100 mn in insulators. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The surface properties of boron-doped nanocrystalline diamond films treated with H(2) plasma was investigated in regard to their electrochemical response for phenol oxidation. The surface of these films is relatively flat formed by crystallites with sizes of about 40 nm. X-ray photoelectron spectroscopy analyses showed that electrode surface has a high amount of C-H bonds. This behavior is in agreement with Mott-Schottky plot measurements concerning the flat band potential that presented a value as expected for hydrogenated diamond surface. This electrode presented the phenol detection limit of 0.08 mg L(-1) for low phenol concentrations from 40 to 250 mu mol L(-1).
Resumo:
In the present paper, we discuss a generalized theory of electrical characteristics for amorphous semiconductor (or insulator) Schottky barriers, considering: (i) surface states, (ii) doping impurity states at a single energy level and (iii) energetically distributed bulk impurity states. We also consider a thin oxide layer (≈10 Å) between metal and semiconductor. We develop current versus applied potential characteristics considering the variation of the Fermi level very close to contact inside the semiconductor and decrease in barrier height due to the image force effect as well as potential fall on the oxide layer. Finally, we discuss the importance of each parameter, i.e. surface states, distributed impurity states, doping impurity states, thickness of oxide layer etc. on the log I versus applied potential characteristics. The present theory is also applicable for intimate contact, i.e. metal-semiconductor contact, crystalline material structures or for Schottky barriers in insulators or polymers.
Resumo:
Electron irradiation of solids produces a backemission of secondary electrons (energies between 0 and 50 eV) and reflected primaries (energies between 50 eV and that of the incident beam). For insulators, it is shown that an externally applied positive electric field penetrating into the solid material, energizes electrons generated by the primary irradiation and enables them to travel back to the surface of incidence and be emitted (stimulated secondary emission).
Resumo:
In this paper we discuss the propagation of nonlinear electromagnetic short waves in ferromagnetic insulators. We show that such propagation is perpendicular to an externally applied field. In the nonlinear regime we determine various possible propagation patterns: an isolated pulse, a modulated sinusoidal wave, and an asymptotic two-peak wave. The mathematical structure underlying the existence of these solutions is that of the integrable sine-Gordon equation.
Resumo:
This work has as objective to demonstrate technical and economic viability of hydrogen production utilizing glycerol. The volume of this substance, which was initially produced by synthetic ways (from oil-derived products), has increased dramatically due mainly to biodiesel production through transesterification process which has glycerol as main residue. The surplus amount of glycerol has been generally utilized to feed poultry or as fuel in boilers, beyond other applications such as production of soaps, chemical products for food industry, explosives, and others. The difficulty to allocate this additional amount of glycerol has become it in an enormous environment problem, in contrary to the objective of biodiesel chain, which is to diminish environmental impact substituting oil and its derivatives, which release more emissions than biofuels, do not contribute to CO2-cycle and are not renewable sources. Beyond to utilize glycerol in combustion processes, this material could be utilized for hydrogen production. However, a small quantity of works (theoretical and experimental) and reports concerning this theme could be encountered. Firstly, the produced glycerol must be purified since non-reacted amounts of materials, inclusively catalysts, contribute to deactivate catalysts utilized in hydrogen production processes. The volume of non-reacted reactants and non-utilized catalysts during transesterification process could be reutilized. Various technologies of thermochemical generation of hydrogen that utilizes glycerol (and other fuels) were evaluated and the greatest performances and their conditions are encountered as soon as the most efficient technology of hydrogen production. Firstly, a physicochemical analysis must be performed. This step has as objective to evaluate the necessary amount of reactants to produce a determined volume of hydrogen and determine thermodynamic conditions (such as temperature and pressure) where the major performances of hydrogen production could be encountered. The calculations are based on the process where advance degrees are found and hence, fractions of products (especially hydrogen, however, CO2, CO, CH4 and solid carbon could be also encountered) are calculated. To produce 1 Nm3/h of gaseous hydrogen (necessary for a PEMFC - Proton Exchange Membrane Fuel Cell - containing an electric efficiency of about 40%, to generate 1 kWh), 0,558 kg/h of glycerol is necessary in global steam reforming, 0,978 kg/h of glycerol in partial oxidation and cracking processes, and 0,782 kg/h of glycerol in autothermal reforming process. The dry reforming process could not be performed to produce hydrogen utilizing glycerol, in contrary to the utilization of methane, ethanol, and other hydrocarbons. In this study, steam reforming process was preferred due mainly to higher efficiencies of production and the need of minor amount of glycerol as cited above. In the global steam reforming of glycerine, for one mole of glycerol, three moles of water are necessary to produce three moles of CO2 and seven moles of H2. The response reactions process was utilized to predict steam reforming process more accurately. In this mean, the production of solid carbon, CO, and CH4, beyond CO2 and hydrogen was predicted. However, traces of acetaldehyde (C2H2), ethylene (C2H4), ethylene glycol, acetone, and others were encountered in some experimental studies. The rates of determined products obviously depend on the adopted catalysts (and its physical and chemical properties) and thermodynamic conditions of hydrogen production. Eight reactions of steam reforming and cracking were predicted considering only the determined products. In the case of steam reforming at 600°C, the advance degree of this reactor could attain its maximum value, i.e., overall volume of reactants could be obtained whether this reaction is maintained at 1 atm. As soon as temperature of this reaction increases the advance degree also increase, in contrary to the pressure, where advance degree decrease as soon as pressure increase. The fact of temperature of reforming is relatively small, lower costs of installation could be attained, especially cheaper thermocouples and smaller amount of thermo insulators and materials for its assembling. Utilizing the response reactions process in steam reforming, the predicted volumes of products, for the production of 1 Nm3/h of H2 and thermodynamic conditions as cited previously, were 0,264 kg/h of CO (13% of molar fraction of reaction products), 0,038 kg/h of CH4 (3% of molar fraction), 0,028 kg/h of C (3% of molar fraction), and 0,623 kg/h of CO2 (20% of molar fraction). Through process of water-gas shift reactions (WGSR) an additional amount of hydrogen could be produced utilizing mainly the volumes of produced CO and CH4. The overall results (steam reforming plus WGSR) could be similar to global steam reforming. An attention must to be taking into account due to the possibility to produce an additional amount of CH4 (through methanation process) and solid carbon (through Boudouard process). The production of solid carbon must to be avoided because this reactant diminishes (filling the pores) and even deactivate active area of catalysts. To avoid solid carbon production, an additional amount of water is suggested. This method could be also utilized to diminish the volume of CO (through WGSR process) since this product is prejudicial for the activity of low temperature fuel cells (such as PEMFC). In some works, more three or even six moles of water are suggested. A net energy balance of studied hydrogen production processes (at 1 atm only) was developed. In this balance, low heat value of reactant and products and utilized energy for the process (heat supply) were cited. In the case of steam reforming utilizing response reactions, global steam reforming, and cracking processes, the maximum net energy was detected at 700°C. Partial oxidation and autothermal reforming obtained negative net energy in all cited temperatures despite to be exothermic reactions. For global steam reforming, the major value was 114 kJ/h. In the case of steam reforming, the highest value of net energy was detected in this temperature (-170 kJ/h). The major values were detected in the cracking process (up to 2586 kJ/h). The exergetic analysis has as objective, associated with physicochemical analysis, to determine conditions where reactions could be performed at higher efficiencies with lower losses. This study was performed through calculations of exergetic and rational efficiencies, and irreversibilities. In this analysis, as in the previously performed physicochemical analysis, conditions such as temperature of 600°C and pressure of 1 atm for global steam reforming process were suggested due to lower irreversibility and higher efficiencies. Subsequently, higher irreversibilities and lower efficiencies were detected in autothermal reforming, partial oxidation and cracking process. Comparing global reaction of steam reforming with more-accurate steam reforming, it was verified that efficiencies were diminished and irreversibilities were increased. These results could be altered with introduction of WGSR process. An economic analysis could be performed to evaluate the cost of generated hydrogen and determine means to diminish the costs. This analysis suggests an annual period of operation between 5000-7000 hours, interest rates of up to 20% per annum (considering Brazilian conditions), and pay-back of up to 20 years. Another considerations must to be take into account such as tariffs of utilized glycerol and electricity (to be utilized as heat source and (or) for own process as pumps, lamps, valves, and other devices), installation (estimated as US$ 15.000 for a plant of 1 Nm3/h) and maintenance cost. The adoption of emission trading schemes such as carbon credits could be performed since this is a process with potential of mitigates environment impact. Not considering credit carbons, the minor cost of calculated H2 was 0,16288 US$/kWh if glycerol is also utilized as heat sources and 0,17677 US$/kWh if electricity is utilized as heat sources. The range of considered tariff of glycerol was 0-0,1 US$/kWh (taking as basis LHV of H2) and the tariff of electricity is US$ 0,0867 US$/kWh, with demand cost of 12,49 US$/kW. The costs of electricity were obtained by Companhia Bandeirante, localized in São Paulo State. The differences among costs of hydrogen production utilizing glycerol and electricity as heat source was in a range between 0,3-5,8%. This technology in this moment is not mature. However, it allows the employment generation with the additional utilization of glycerol, especially with plants associated with biodiesel plants. The produced hydrogen and electricity could be utilized in own process, increasing its final performance.
Resumo:
The experiment was carried out aiming to evaluate the gas exchange of dwarf elephant grass genotypes under different hydric conditions, in a randomized design with three replications. Genotypes of dwarf elephant grass (Mott, CNPGL 94-34-3 and CNPGL 92-198-7) were analyzed under two hydric conditions: irrigated (I) and non-irrigated (NI). Differences between treatments I and NI were observed for all genotypes for photosynthesis, stomatal conductance, transpiration and water vapor pressure deficit. Genotype CNPGL 94-34-3 presented highest tolerance to hydric stress, followed by Mott and CNPGL 92-198-7 genotypes. All genotypes presented high photosynthetic rate, under ideal conditions of soil humidity, thus characterizing the analyzed dwarf elephant grass genotypes as plants with high photosynthetic efficiency.