175 resultados para Maximum Power Point Tracking System (MPPT)
Resumo:
This work presents the evaluation of different power electronic integrated converters suitable for photovoltaic applications, in order to reduce complexity and improve reliability. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. In this context, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. Power decoupling, MPPT and Tri-State modulations are also considered. Finally, simulation and experimental results are presented and compared for the analyzed topologies. © 2011 IEEE.
Resumo:
In this paper a heuristic technique for solving simultaneous short-term transmission network expansion and reactive power planning problem (TEPRPP) via an AC model is presented. A constructive heuristic algorithm (CHA) aimed to obtaining a significant quality solution for such problem is employed. An interior point method (IPM) is applied to solve TEPRPP as a nonlinear programming (NLP) during the solution steps of the algorithm. For each proposed network topology, an indicator is deployed to identify the weak buses for reactive power sources placement. The objective function of NLP includes the costs of new transmission lines, real power losses as well as reactive power sources. By allocating reactive power sources at load buses, the circuit capacity may increase while the cost of new lines can be decreased. The proposed methodology is tested on Garver's system and the obtained results shows its capability and the viability of using AC model for solving such non-convex optimization problem. © 2011 IEEE.
Resumo:
This paper presents a careful evaluation among the most usual MPPT techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic (PV) panel, PV voltage ripple, dynamic response and use of sensors, considering that the models are first implemented via MatLab/Simulink®, and after a digitally controlled boost DC-DC converter was implemented and connected to an Agilent Solar Array simulator in order to verify the simulation results. The prototype was built, the algorithms are digitally developed and the main experimental results are also presented, including dynamic responses and the experimental tracking factor (TF) for the analyzed MPPT techniques. © 2011 IEEE.
Resumo:
This paper presents a historical perspective of the Power Electronics education that has lead to the present situation in which such technology is indispensable for the exploitation of almost all type of clean energy primary sources. Some academic initiatives in Brazil are here discussed focusing the institutions grouped in a CAPES-Pró-Engenharia program. The curricula aspects and innovations are presented, emphasizing the multidisciplinary character of this field of Power Electronics application. © 2011 IEEE.
Resumo:
This paper presents a power system capacity expansion planning modelconsidering carbon emissions constraints. In addition to the traditionaltechnical and economical issues usually considered in the planning process, two environmental policies that consist on the taxation and the annual limitsof carbon dioxide (CO 2) emissions are considered. Furthermore, the gradualretirement of old inefficient generation plants has been included. The approachguarantees a cleaner electricity production in the expanded power system ata relatively low cost. The proposed model considers the transmission systemand is applied to a 4-region and 11-region power systems over a 20-yearplanning horizon. Results show practical investment decisions in terms of sustainability and costs.
Resumo:
The system reliability depends on the reliability of its components itself. Therefore, it is necessary a methodology capable of inferring the state of functionality of these components to establish reliable indices of quality. Allocation models for maintenance and protective devices, among others, have been used in order to improve the quality and availability of services on electric power distribution systems. This paper proposes a methodology for assessing the reliability of distribution system components in an integrated way, using probabilistic models and fuzzy inference systems to infer about the operation probability of each component. © 2012 IEEE.
Resumo:
This paper presents a distribution feeder simulation using VHDL-AMS, considering the standard IEEE 13 node test feeder admitted as an example. In an electronic spreadsheet all calculations are performed in order to develop the modeling in VHDL-AMS. The simulation results are compared in relation to the results from the well knowing MatLab/Simulink environment, in order to verify the feasibility of the VHDL-AMS modeling for a standard electrical distribution feeder, using the software SystemVision™. This paper aims to present the first major developments for a future Real-Time Digital Simulator applied to Electrical Power Distribution Systems. © 2012 IEEE.
Resumo:
In this work, experimental results are reported for a small scale cogeneration plant for power and refrigeration purposes. The plant includes a natural gas microturbine and an ammonia/water absorption chiller fired by steam. The system was tested under different turbine loads, steam pressures and chiller outlet temperatures. An evaluation based on the 1st and 2nd Laws of Thermodynamics was also performed. For the ambient temperature around 24°C and microturbine at full load, the plant is able to provide 19 kW of saturated steam at 5.3 bar (161 °C), corresponding to 9.2 kW of refrigeration at -5 °C (COP = 0.44). From a 2nd law point-of-view, it was found that there is an optimal chiller outlet temperature that maximizes the chiller exergetic efficiency. As expected, the microturbine presented the highest irreversibilities, followed by the absorption chiller and the HRSG. In order to reduce the plant exergy destruction, it is recommended a new design for the HRSG and a new insulation for the exhaust pipe. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a straightforward compromising method to determine the output power of all committed units during the scheduling time horizon. Unlike the conventional methods that work based on a constant pollution control cost (CPCC), this method works based on the system topology such as demand, minimum cost and minimum output emission of the system. In order to have a meaningful compromise between costs and emission in economic and emission dispatch (EED) problem, a flexible pollution control cost (FPCC) is proposed. Also a dynamic economic emission dispatch (DEED) approach is considered where the ramping constraints couple the scheduling hours; the inclusion of valve-point effect makes the DEED modeling more practical. The validity and effectiveness of the unproblematic FPCC approach is verified through an IEEE 30-bus test system with 6 unit for the 6-hour scheduling horizon. © 2013 IEEE.
Resumo:
In the network reconfiguration context, the challenge nowadays is to improve the system in order to get intelligent systems that are able to monitor the network and produce refined information to support the operator decisions in real time, this because the network is wide, ramified and in some places difficult to access. The objective of this paper is to present the first results of the network reconfiguration algorithm that has been developed to CEMIG-D. The algorithm's main idea is to provide a new network configuration, after an event (fault or study case), based on an initial condition and aiming to minimize the affected load, considering the restrictions of load flow equations, maximum capacity of the lines as well as equipments and substations, voltage limits and system radial operation. Initial tests were made considering real data from the system, provided by CEMIG-D and it reveals very promising results. © 2013 IEEE.
Resumo:
Mo-doped TiO2 powders were prepared using a dry mixture of TiO2 and MoO3 oxides with several compositions, followed by a calcination step at several temperatures. The resulting oxide system develops yellow and green tones. The XRD patterns showed only traces of MoO 3; however, EDS results, combined with TG/DTA data, confirmed the presence of molybdenum ions, suggesting that the changes in optical properties of the oxide system is due to the incorporation of Mo ions into the TiO 2 matrix, substituting Ti+4 with Mo+6 ions. The band gap decreased with increasing of MoO3 content; on the other hand, the band gap reached a maximum value at about 850°C to 910°C when plotted as a function of the calcination temperature. The glazes produced showed that the oxide system under study is a potential material for use as abinary ceramic pigment. Copyright © 2013 Taylor & Francis Group, LLC.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)