182 resultados para Litter decomposition
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Although many studies have shown that soil solution chemistry can be a reliable indicator of biogeochemical cycling in forest ecosystems, the effects of litter manipulations on the fluxes of dissolved elements in gravitational soil solutions have rarely been investigated. We estimated the fluxes of NH4-N, NO3-N, K, Ca, Mg, Na, Cl, dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) over the first two years after re-planting Eucalyptus trees in the coastal area of Congo. Two treatments were replicated in two blocks after clear-cutting 7-year-old stands: in treatment R, all the litter above the mineral soil was removed before planting, and in a double slash (DS) treatment, the amount of harvest residues was doubled. The soil solutions were sampled down to a depth of 4 m and the water fluxes were estimated using the Hydrus 1D model parameterized from soil moisture measurements in 4 plots. Isotopic and spectroscopic analytical techniques were used to assess the changes in dissolved organic matter (DOM) properties throughout the transfer in the soil. The first year after planting, the fluxes of NH4-N, K, Ca, Mg, Na, Cl and DOC in the topsoil of the DS treatment were 2-5 times higher than in R, which showed that litter was a major source of dissolved nutrients. Nutrient fluxes in gravitational solutions decreased sharply in the second year after planting, irrespective of the soil depth, as a result of intense nutrient uptake by Eucalyptus trees. Losses of dissolved nutrients were noticeably low in these Eucalyptus plantations despite a low cation exchange capacity, a coarse soil texture and large amounts of harvest residues left on-site at the clear cut in the DS treatment. All together, these results clarified the strong effect of litter manipulation observed on eucalypt growth in Congolese sandy soils. DOM fluxes, as well as changes in delta C-13, C:N and aromaticity of DOM throughout the soil profile showed that the organic compounds produced in the litter layer were mainly consumed by microorganisms or retained in the topsoil. Below a depth of 15 cm, most of the DOC and the DON originated from the first 2 cm of the soil and the exchanges between soil solutions and soil organic matter were low. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Classical procedures for model updating in non-linear mechanical systems based on vibration data can fail because the common linear metrics are not sensitive for non-linear behavior caused by gaps, backlash, bolts, joints, materials, etc. Several strategies were proposed in the literature in order to allow a correct representative model of non-linear structures. The present paper evaluates the performance of two approaches based on different objective functions. The first one is a time domain methodology based on the proper orthogonal decomposition constructed from the output time histories. The second approach uses objective functions with multiples convolutions described by the first and second order discrete-time Volterra kernels. In order to discuss the results, a benchmark of a clamped-clamped beam with an pre-applied static load is simulated and updated using proper orthogonal decomposition and Volterra Series. The comparisons and discussions of the results show the practical applicability and drawbacks of both approaches.
Resumo:
The constant search for sustainability of production systems have driven research to find alternatives to the problems arising from the intensified use such systems. In this context the present work aimed study the effects of substitution of mineral nitrogen by chicken litter in oat and corn crop in succession and the chemical characteristics of soil. The study was conducted during the period May 2009 to March 2010 in area of Oxisol. The design was of randomized block with four replications. The six treatments were obtained by a combination of different amounts of chicken litter (0, 1500, 3000, 4500, 6000 and 7500 kg ha(-1)) applied 30 days before the sowing of oats combined with the mineral nitrogen applied in coverage in corn (311.1, 257.8, 202.2, 148.9, 95.6, 42.2 kg ha(-1) of urea), for the total supply of 140 kg ha(-1) of nitrogen (N). The application of poultry litter in oat promotes increased the production of dry matter, and content and accumulation of N. The mineral nitrogen substitution by chicken litter increases the yield of corn crop. The use of poultry litter alters the chemical properties of soil, increasing the levels of organic matter, exchangeable Al and acidity potential. However lowers the pH, K, Ca, Mg, sum of bases and base saturation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The dehydration, thermal decomposition and transition phase stage of Zn(II)-diclofenac compoundwere studied by simultaneous TG-DTA and DSC techniques. The TG and DSC curves of this compoundwere obtained with the mass of sample of 2 and 5 mg. Additionally, DSC curves were carried out inopened and closed a-alumina pans under static and nitrogen atmosphere. The DTA and DSC curves showthat this compound possesses exothermic transition phase between 170-180 ºC, which it is irreversible(monotropic reaction). The kinetics study of this transition phase stage was evaluated by DSC undernon-isothermal conditions. The obtained data were evaluated with the isoconversional method, where thevalues of activation energy (Ea/kJmol-1) was plotted in function of the conversion degree (a). The resultsshow that due to mass sample, different activation energies were obtained. From these curves a tendencycan be seen where the plots maintain the same profile for closed lids and almost run parallel to each other.
Resumo:
The Polymeric Precursor Method has proved suitable for synthesizing reactive powders using low temperatures of calcination, especially when compared with conventional methods. However, during the thermal decomposition of the polymeric precursor the combustion event can be releases an additional heat that raises the temperature of the sample in several tens of degrees Celsius above the set temperature of the oven. This event may be detrimental to some material types, such as the titanium dioxide semiconductor. This ceramic material has a phase transition at around 600 ° C, which involves the irreversible structural rearrangement, characterized by the phase transition from anatase to rutile TiO2 phase. The control of the calcination step then becomes very important because the efficiency of the photocatalyst is dependent on the amount of anatase phase in the material. Furthermore, use of dopant in the material aims to improve various properties, such as increasing the absorption of radiation and in the time of the excited state, shifting of the absorption edge to the visible region, and increasing of the thermal stability of anatase. In this work, samples of titanium dioxide were synthesized by the Polymeric Precursor Method in order to investigate the effect of Fe (III) doping on the calcination stages. Thermal analysis has demonstrated that the Fe (III) insertion at 1 mol% anticipates the organic decomposition, reducing the combustion event in the final calcination. Furthermore, FTIR-PAS, XRD and SEM results showed that organic matter amount was reduced in the Fe (III)-doped TiO2 sample, which reduced the rutile phase amount and increased the reactivity and crystallinity of the powder samples.
Resumo:
Semiconductor-mediated photocatalytic oxidation is an interesting method for water decontamination and a specially modified TiO2 is said to be a promising material. This study verified that the synthesis of 1wt%Ag modified-Sc0.01Ti0.99O1.995 powder samples prepared by Polymeric Precursor Method is capable of forming a mixture of anatase-rutile phase with high photocatalytic performance. This kind of material is found to have a lower bandgap compared to the TiO2-anatase commercial powders, which can be associated to an innovative hybrid modification. The simultaneous insertion of scandium in order to generate a p-type semiconductor and a metallic silver nanophase acting as an electron trapper demonstrated being capable of enhancing the degradation of rhodamine B compared to the commercial TiO2. In spite of the different thermal treatments or phase amounts, the hybrid modified powder samples showed higher photocatalytic activity than the commercial ones.
Resumo:
In Brazil, due to its availability, sugar cane bagasse has a high potential for power generation. The knowledge of ignition behavior, as well as the knowledge of the chemical kinetics, in of fuels combustion process is important features in boilers projects and in the stability of the combustion process control. The aim of this study is to investigate the thermal behavior of sugar cane bagasse, coal and their blends. The methodology proposed by Tognotti et al. (1985) was applied to determine the ignition temperature for all samples. Ignition temperatures were 256oC for neat bagasse and 427oC for neat coal, and 275oC for both blends (50-50% and 25-75%). The ModelFree Kinetics was applied to determine the apparent activation energy (Eα) of the thermal decomposition of sugar cane bagasse. For the two major events of mass loss of bagasse which correspond to the thermal decomposition of organic matter (mainly hemicellulose, cellulose and lignin), average values of Eα were obtained for both combustion and pyrolysis processes. In synthetic air atmosphere, the Eα were 170.8±26.3 kJ⋅mol-1 and 277.8±58.6 kJ⋅mol-1, while in nitrogen atmosphere, the Eα were 185.0 ± 11.4 kJ⋅mol-1 and 82.1±44.4 kJ⋅mol-1. The results obtained can be explained by synergistic effects when both bagasse and coal were blended, changing the fuel reactivity.
Resumo:
In tropical regions there is rapid decomposition of plant material deposited on the soil, and the ability to recycle nutrients through this decomposition is one of the most important aspects of cover crops. The aim of this study was to evaluate the yield and nutrient release from forage crops intercropped with maize for silage, and soybean in succession. The study was conducted in the experimental area of Universidade Estadual Paulista, Ilha Solteira campus, Brazil. The experiment consisted of maize for silage intercropped with four forage species (Urochloa brizantha cv. Marandu, Urochloa ruziziensis, Panicum maximum cv. Tanzania, and Panicum maximum cv. Aries) sown in three modalities: in the maize row, together with fertilizer; broadcast at maize sowing; and broadcast in the V4 stage of maize, in a randomized block design in a 4 x 3 factorial arrangement with four replications. The evaluation of nutrient release was performed during the soybean cropping that followed the intercropping by the litter bag method at 30, 60, 90, and 120 days after sowing of soybean. Panicum maximum cv. Tanzania showed higher dry matter yield when sown by broadcasting at maize sowing. Sowing of forages in the maize row, and through broadcasting at maize sowing led to greater dry matter yield for straw formation. Intercropping of maize with forages in the autumn is an alternative for increasing the amount of straw and cycling of macronutrients in a no-till system. Potassium was the nutrient with the greatest accumulation in the forage straws (up to 150 kg ha(-1)), with 100 % release at 90 days after sowing soybean. The forage straws are thus an excellent alternative for cycling of this nutrient. Panicum maximum cv. Tanzania sown by broadcasting at the time of maize sowing showed greater phosphorus cycling (13 kg ha(-1)). Panicum maximum cv. Tanzania broadcast in the V4 stage of maize is the option with least potential for straw production and nutrient cycling, while the other options (forages and sowing modalities) have higher potential for use, at the criteria of machine availability for setting up intercropping with corn.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Solid state chelates of general formula H-2[M(EDTA)] . nH2O, where M is Co, Ni, Cu or Zn, and EDTA is ethylenediaminetetraacetate, were prepared. Thermogravimetry-derivative thermogravimetry (TG-DTG), differential thermal analysis (DTA) and complexometry were used to characterize and to study the thermal stability and thermal decomposition of these compounds.