158 resultados para Laboratório remoto


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land use management has becoming a very important activity. Aerial photo interpretation is a basic resource and constitutes in a technique which enables infinite refining. Agricultural development and land use require a careful initial planning in order not only to protect them against superficial changing provoked by natural phenomenon but also to gradually develop its productive capacity. For the efficiency of land management, it is necessary to access correct and detailed information which can be available through aerial images of remote sensing. The use of vertical aerial photography through Remote Sensing has become more common in boundary survey projects, management and exploration, mainly because it substitutes, with lots of advantage, for cartographic bases, besides offering detailed characteristics, eliminating access difficulties in inaccessible areas, as well as facilitating a tridimensional view once it increases map efficiency and accuracy by combining field and laboratory work with photography interpretation. This work, using panchromatic aerial photography in nominal scale 1:25000 (1962), 1:45000 (1977) , and approximate nominal scale of 1:30.000, originating from aerial survey obtained in 2005, aimed at showing through the Geographic Information System (GIS) the possibility of developing a more complete and accurate analysis of the area values, obtained directly from photos without scale correction, and after comparing it with area values obtained from aerial photography with correct scale referred in IGC (Brazilian Cartography and Geography Institute) guidelines, resulting in an error coefficient which shows area differences through two proposed study. Considering the aerial photography in three different years: 1962, 1977 and 2005 it is possible to affirm that the 2005’s images presented lower values of area difference (43, 48 square meters) than determined area values in reference chart and the 2005’s colored images has facilitated the photo interpretation of the landscape, becoming accurate the confronting traces and among land owners and consequently offering precision during land marking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of pesticides is one of the most important steps in the agricultural production process. The spray volume can directly affect application success, and this parameter is directly dependent on the displacement speed of the sprayer. In conventional systems, the operator has to maintain a constant speed to ensure uniform application along the tracks. In order to improve over application quality and preserve levels of precision for applied doses; the use of electronic flow control systems allows for automatic adjustment of volume applied over the area when there is a change in velocity during application. The objective of this research was to study the response times of a flow controller with DGPS for aerial application subjected to variations of velocity in laboratory simulated flight conditions. For this purpose, a bench test has been developed including software for simulating DGPS signals, which was used to simulate different flight speeds and conditions. The results showed the average response time from the flow controller to a change in velocity to be between 6 and 20 seconds. Variations in total flow and the controller setting had a significant influence on response time with situations where there was interaction between the factors being evaluated. There was a tendency for better response times using a constant setting for the control algorithm other than that specified by the manufacturer. The flow controller presented an average error rates below 2% in all evaluated operating conditions, providing satisfactory accuracy in determining the output of product in different test situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to discriminate vegetation classes throught remote sensing images from the satellite CBERS-2, related to winter and summer seasons in the Campos Gerais region Paraná State, Brazil. The vegetation cover of the region presents different kinds of vegetations: summer and winter cultures, reforestation areas, natural areas and pasture. Supervised classification techniques like Maximum Likelihood Classifier (MLC) and Decision Tree were evaluated, considering a set of attributes from images, composed by bands of the CCD sensor (1, 2, 3, 4), vegetation indices (CTVI, DVI, GEMI, NDVI, SR, SAVI, TVI), mixture models (soil, shadow, vegetation) and the two first main components. The evaluation of the classifications accuracy was made using the classification error matrix and the kappa coefficient. It was defined a high discriminatory level during the classes definition, in order to allow separation of different kinds of winter and summer crops. The classification accuracy by decision tree was 94.5% and the kappa coefficient was 0.9389 for the scene 157/128. For the scene 158/127, the values were 88% and 0.8667, respectively. The classification accuracy by MLC was 84.86% and the kappa coefficient was 0.8099 for the scene 157/128. For the scene 158/127, the values were 77.90% and 0.7476, respectively. The results showed a better performance of the Decision Tree classifier than MLC, especially to the classes related to cultivated crops, indicating the use of the Decision Tree classifier to the vegetation cover mapping including different kinds of crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The education designed and planned in a clear and objective manner is of paramount importance for universities to prepare competent professionals for the labor market, and above all can serve the population with an efficient work. Specifically, in relation to engineering, conducting classes in the laboratories it is very important for the application of theory and development of the practical part of the student. The planning and preparation of laboratories, as well as laboratory equipment and activities should be developed in a succinct and clear way, showing to students how to apply in practice what has been learned in theory and often shows them why and where it can be used when they become engineers. This work uses the MATLAB together with the System Identification Toolbox and Arduino for the identification of linear systems in Linear Control Lab. MATLAB is a widely used program in the engineering area for numerical computation, signal processing, graphing, system identification, among other functions. Thus the introduction to MATLAB and consequently the identification of systems using the System Identification Toolbox becomes relevant in the formation of students to thereafter when necessary to identify a system the base and the concept has been seen. For this procedure the open source platform Arduino was used as a data acquisition board being the same also introduced to the student, offering them a range of software and hardware for learning, giving you every day more luggage to their training

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we carried out a study of the 2208 model servo module Datapool, aiming to make the recognition module and the material that accompanies it, and develop the experiences suggested in their study tours, in order to prove and understand its operation. From this study, three experiments were developed, aimed to familiarizing students with the module, calibrate it, and to control servo motor's speed and position, experiences which can become part of the laboratory of Linear Control, making the learning of concepts just richer, because visually, students can escape the theoretical field and see in practice complex concepts being employed