184 resultados para Inhibitory Receptors
Resumo:
Gap junctions are connexin-formed channels that play an important role in intercellular communication in most cell types. In the immune system, specifically in macrophages, the expression of connexins and the establishment of functional gap junctions are still controversial issues. Macrophages express P2X(7) receptors that, once activated by the binding of extracellular ATP, lead to the opening of transmembrane pores permeable to molecules of up to 900 Da. There is evidence suggesting an interplay between gap junctions and P2 receptors in different cell systems. Thus, we used ATP-sensitive and -insensitive J774.G8 macrophage cell lines to investigate this interplay. To study junctional communication in J774-macrophage-like cells, we assessed cell-to-cell communication by microinjecting Lucifer Yellow. Confluent cultures of ATP-sensitive J774 cells (ATP-s cells) are coupled, whereas ATP-insensitive J774 cells (ATP-i cells), derived by overexposing J774 cells to extracellular ATP until they do not display the phenomenon of ATP-induced permeabilization, are essentially uncoupled. Western-blot and reverse-transcription polymerase chain reaction assays revealed that ATP-s and ATP-i cells express connexin43 (Cx43), whereas only ATP-s cells express the P2X(7) receptor. Accordingly, ATP-i cells did not display any detectable ATP-induced current under whole-cell patch-clamp recordings. Using immunofluorescence microscopy, Cx43 reactivity was found at the cell surface and in regions of cell-cell contact of ATP-s cells, whereas, in ATP-i cells, Cx43 immunoreactivity was only present in cytosolic compartments. Using confocal microscopy, it is shown here that, in ATP-s cells as well as in peritoneal macrophages, Cx43 and P2X(7) receptors are co-localized to the membrane of ATP-s cells and peritoneal macrophages.
Resumo:
In this study we investigated: (a) the effects of intracerebroventricular (i.c.v.) injections of moxonidine (an alpha(2)-adrenergic and imidazoline receptor agonist) on the ingestion of water and NaCl induced by 24 h of water deprivation; (b) the effects of i.c.v. injection of moxonidine on central angiotensin II (ANG II)- and carbachol-induced water intake; (c) the effects of the pre-treatment with i.c.v, idazoxan (an alpha(2)-adrenergic and imidazoline receptor antagonist) and RX 821002 (a selective alpha(2)-adrenergic antagonist) on the antidipsogenic action of central moxonidine. Male Holtzman rats had stainless steel cannulas implanted in the lateral cerebral ventricle. Intracerebroventricular injection of moxonidine (5 and 20 nmol/1 mu l) reduced the ingestion of 1.5% NaCl solution (4.1 +/- 1.1 and 2.9 +/- 2.5 ml/2 h, respectively vs. control = 7.4 +/- 2.1 ml/2 h) and water intake (2.0 +/- 0.6 and 0.3 +/- 0.2 ml/h, respectively vs. control = 13.0 +/- 1.4 ml/h) induced by water deprivation, Intracerebroventricular moxonidine (5 nmol/1 mu l) also reduced i.c.v. ANG Ii-induced water intake (2.8 +/- 0.9 vs. control = 7.9 +/- 1.7 ml/1 h) and i.c.v. moxonidine (10 and 20 nmol/1 mu l) reduced i.c.v. carbachol-induced water intake (4.3 +/- 1.7 and 2.1 +/- 0.9, respectively vs. control = 9.2 +/- 1.0 ml/1 h). The pre-treatment with i.c.v. idazoxan (40 to 320 nmol/1 mu l) abolished the inhibitory effect of i.c.v, moxonidine on carbachol-induced water intake. Intracerebroventricular idazoxan (320 nmol/1 mu l) partially reduced the inhibitory effect of moxonidine on water deprivation-induced water intake and produced only a tendency to reduce the antidipsogenic effect of moxonidine on ANG Ii-induced water intake. RX 821002 (80 and 160 nmol/1 mu l) completely abolished the antidipsogenic action of moxonidine on ANG Ii-induced water intake. The results show that central injections c: moxonidine strongly inhibit water and NaCl ingestion. They also suggest the involvement of central alpha(2)-adrenergic receptors in the antidipsogenic action of moxonidine. (C) 1999 Elsevier B.V.
Resumo:
This study investigated the roles of serotonin (5-HT) receptors in the lateral parabrachial nucleus (LPBN), and brain angiotensin type 1 (AT(1)) receptors in the intake of 0.3 M NaCl and water induced by angiotensin II (ANG II). Rats were implanted with stainless steel cannulas for injections into tho subfornical organ (SFO) and into the LPBN. Bilateral LPBN pretreatment with the nonselective serotonergic 5-HT1/5-HT2 receptor antagonist methysergide (4 mu g/200 nl) markedly enhanced 0.3 M NaCl intake induced by injections of ANG II (20 ng/200 nl) into the SFO. Pretreatment of the SFO with the AT(1) receptor antagonist losartan (1 mu g/200 nl) blocked the intake of 0.3 M NaCl induced by ANG II in combination with LPBN methysergide injections. These results suggest that serotonergic mechanisms associated with the LPBN inhibit the expression of salt appetite induced by ANG II injections into Ihs SFO. In addition, the results indicate that the enhanced NaCl intake generated by central administration of ANG II in the presence of LPBN 5-HT blockade is mediated bg brain ATI receptors.
Resumo:
1. Angiotensin (Ang)II is involved in responses to hypovolaemia, such as sodium appetite and increase in blood pressure, Target areas subserving these responses for AngII include the cardiovascular system in the periphery and the circumventricular organs in the brain.2. Conflicting data have been reported for the role of systemic versus brain AngII in the mediation of sodium appetite.3. The role for systemic AngII and systemic AngII receptors in the control of blood pressure in hypovolaemia is well established. In contrast with systemic injections, i.c.v injections of AngII non-peptide AT(1) and AT(2) receptor antagonists, such as losartan and PD123319, do not reduce arterial pressure in sodium-depleted (furosemide injection plus removal of ambient sodium for 24 h) rats. Thus, brain AngII receptors are likely not important for cardiovascular responses to hypovolaemia induced by sodium depletion.4. Intracerebroventricular injections of losartan or PD 123319 increase arterial pressure when injected at relatively high doses. This hypertensive effect is unlikely to be an agonist effect on brain AngII receptors, Increases in arterial pressure produced by i.c.v, losartan are attenuated by lesions of the tissue surrounding the anterior third ventricle (AV3V). The hypertensive effect of i.c.v, AngII is abolished by lesions of the AV3V.5. Hypertension induced by AngII receptor antagonists is consistent with hypotension induced by AngII acting in the brain, However, the full physiological significance of this hypotensive effect mediated by brain AngII receptors remains to be determined.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Crotoxin (CTX). a neurotoxin isolated from the venom of the South American rattlesnake Crotalus durissus terrificus. induces analgesia. In this study, we evaluated the antinociceptive effect of CTX in a model of neuropathic pain induced by rat sciatic nerve transection. Hyperalgesia was detected 2 h after nerve transection and persisted for 64 days. Immersion of proximal and distal nerve stumps in CTX solution (0.01 mM for 10 s), immediately after nerve transection, blocked hyperalgesia. The antinociceptive effect of CTX was long-lasting, since it was detected 2 h after treatment and persisted for 64 days. CTX also delayed, but did not block, neurectomy-induced neuroma formation. The effect of CTX was blocked by zileuton (100 mg/kg, p.o.) and atropine (10 mg/kg. i.p.), and reduced by yohimbine (2 mg/kg, i.p.) and methysergide (5 mg/kg, i.p.). on the other hand. indomethacin (4 mg/kg, i.v.). naloxone (1 mg/kg, i.p.). and N-methyl atropine (30 mg/kg, i.p.) did not interfere with the effect of CTX. These results indicate that CTX induces a long-lasting antinociceptive effect in neuropathic pain, which is mediated by activation of central muscarinic receptors and partially, by activation of alpha-adrenoceptors and 5-HT receptors. Eicosanoids derived from the lipoxygenase pathway modulate the action of crotoxin. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)