320 resultados para INFECTED MACROPHAGES
Resumo:
As demonstrated previously in our laboratory, B-1 cells migrate from the peritoneal cavity of mice and home to a distant site of inflammation to become macrophage-like cells. However, the influence that these cells might have on the kinetics and fate of the inflammatory process is not known. Considering that macrophages are pivotal in the inflammatory reaction, we decided to investigate the possible influence B-1 cells could have on macrophage activities in vitro. Our results show that peritoneal macrophages from Xid mice, a mouse strain deprived of B-1 cells, have higher phagocytic indexes for zymozan particles when compared with macrophages from wild-type mice. Moreover, macrophages from wild-type mice have a lower ability to release nitric oxide and hydrogen peroxide when compared with macrophages from Xid mice. Experiments using cocultures of B-1 cells and macrophages from Xid mice in transwell plates demonstrated that B-1 cells down-regulate macrophage activities. These observations also indicate that this phenomenon is not due to a physical interaction between these two cell populations. As B-1 cells are one of the main sources of interleukin (IL)-10, we demonstrate in this study that adherent peritoneal cells from Xid mice produce significantly less amounts of this cytokine in culture when compared with IL-10 production by cells from wild-type mice. When B-1 cells from IL-10 knock-out mice and macrophages from wild-type mice were cocultured in transwell plates, the phagocytic index of macrophages was not altered demonstrating that B-1 cells can influence the effector functions of macrophages in vitro via IL-10 secretion.
Resumo:
1. We investigated the effect of a persistent carrageenin- or nystatin-induced inflammatory reaction on heterotopic ossification produced by the subcutaneous implant of a demineralized bone matrix in female Swiss mice (25 to 35 g).2. Subcutaneous carrageenin injection (0.3 ml of a 2% solution in saline) into mice induced an inflammatory reaction characterized by a mature granuloma predominantly of macrophages containing particles of the irritant in their cytoplasm and which remained unchanged until the end of the experiment (40th day).3. Subcutaneous nystatin inoculation (30,000 IU in 0.3 ml saline) induced an inflammatory reaction consisting initially of macrophages (4th day) but later turning into an epithelioid granuloma (7th day) consisting predominantly of epithelioid cells and which was present up to the 2 lst day when it was gradually replaced by adipocytes up to the 30th day.4. An intramuscular implant of demineralized bone matrix (DBM, approximately 10 mg) induced the formation of cartilage and bone tissue and of hemopoietic bone marrow (heterotopic ossification) in 100% of the control animals (N = 5). An intramuscular DBM implant in animals that received carrageenin (N = 19) or nystatin (N = 21) induced heterotopic ossification in 100 and 57% (P<0.01)) of the animals, respectively.5. The response to a dorsal subcutaneous DBM implant was essentially negative in control animals (N = 5), whereas implants performed near the site injected with carrageenin (N = 28) or nystatin (N = 31) produced a response in 71 (P <0.01) and 36 % (P<0.01) of the animals, respectively. A DBM implant into the contralateral (control) dorsal subcutaneous tissue of the same animals that received carrageenin (N = 25) or nystatin (N = 29) resulted in heterotopic ossification in 64 (P<0.01) and 7% of the animals, respectively.6. The results suggest that the macrophages present in the mature granuloma induced by carrageenin somehow favored the development of metaplastic plates after subcutaneous DBM implant and that this effect may be systemic since the same response was observed in contralateral subcutaneous tissue.
Resumo:
The interaction of human monocytes or monocyte-derived macrophages and yeast-form Paracoccidioides brasiliensis was studied in vitro. Yeast cells were readily ingested by adherent monocytes or macrophages. Multiplication of P. brasiliensis, measured by growth as colony forming units (cfu) on a supplemented medium with good plating efficiency, was greater in monocyte co-cultures compared to the number of cfu obtained from complete tissue-culture medium (CTCM). Multiplication increased with time in macrophage cocultures, e.g., from two-six-fold in 24 h to nine-fold in 72 h. Microscopic observations indicated that ingested yeast cells multiplied inside macrophages. When monocytes were treated with supernate cytokines (CK) from concanavalin-A-stimulated mononuclear cells, then co-cultured with P. brasiliensis, multiplication was significantly inhibited compared with control monocyte co-cultures. Treatment of macrophages-derived from monocytes by culture in vitro for 3 days-for a further 3 days with CK resulted in maximal inhibition of multiplication over the subsequent 72 h. Similarly, when monocyte-derived macrophages (after culture for 7 days) were treated for 3 days with recombinant human gamma-interferon (IFN; 300 U/ml) or CK they restricted multiplication of P. brasiliensis by 65% and 95%, respectively, compared with control macrophages, Antibody to IFN abrogated the effect of IFN or CK treatment. These findings show that ingested P. brasiliensis can multiply in human monocytes or macrophages and that this multiplication can be restricted by activated monocytes or macrophages.
Resumo:
Dentin sialoprotein (DSP) and dentin phosphoprotein (DPP), the major dentin proteins, have been shown to induce neutrophil migration through release of IL-1beta, TNF-alpha, MIP-2, and KC. However, the sources of these mediators were not determined. Here, the roles of macrophages and mast cells (MC) in dentin-induced neutrophil accumulation were investigated. Peritoneal MC depletion or the enhancement of macrophage population increased DSP- and DPP-induced neutrophil extravasation. Moreover, supernatants from DSP- and DPP-stimulated macrophages caused neutrophil migration. The release of neutrophil chemotactic factor by macrophages was inhibited by dexamethasone or the supernatant of DSP- treated MC. Consistently, dexamethasone and the MC supernatant inhibited the production of IL-1beta, TNF-alpha, and MIP-2 by macrophages. This inhibitory activity of the DSP- stimulated MC was neutralized by anti-IL-4 and anti-IL-10 antibodies. These results indicate that dentin induces the release of the neutrophil chemotactic substance(s) by macrophages, which are down-modulated by MC-derived IL-4 and IL-10.
Resumo:
1. We describe the isolation of viable merozoites from erythrocytes infected with Babesia bovis or Babesia bigemina organisms by ammonium chloride lysis.2. Parasite morphology was examined by both light and transmission electron microscopy. Erythrocyte-free parasites maintain their viability and infectivity, retain their antigenicity and are suitable for use in the indirect fluorescent antibody assay.
Resumo:
The effect of macrophage blockade on the natural resistance and on the adaptative immune response of susceptible (B10.D2/oSn) and resistant (A/Sn) mice to Paracoccidioides brasiliensis infection was investigated. B10.D2/oSn and A/Sn mice previously injected with colloidal carbon were infected ip with yeast cells to determine the 50% lethal dose, and to evaluate the anatomy and histopathology, macrophage activation, antibody production and DTH reactions. Macrophage blockade rendered both resistant and susceptible mice considerably more susceptible to infection, as evidenced by increased mortality and many disseminated lesions. P. brasiliensis infection and/or carbon treatment increased the ability of macrophages from resistant mice to spread up to 25 days after treatment. In susceptible mice the enhanced spreading capacity induced by carbon treatment was impaired at ail assayed periods except at 1 week after infection. Macrophage blockade enhanced DTH reactions in resistant mice, but did not alter these reactions in susceptible mice, which remained anergic. To the contrary, macrophage blockade enhanced specific antibody production by susceptible mice, but did nor affect the low levels produced by resistant mice. The effect of macrophage blockade confirms the natural tendency of resistant animals to mount DTH reactions in the course of the disease and the preferential antibody response developed by susceptible mice after P. brasiliensis infection. on the whole, macrophage functions appear to play a fundamental role in the natural and acquired resistance mechanisms to P. brasiliensis infection.
Resumo:
The aims of this study were to evaluate the immunomodulatory role of TGF-beta(1), 1L-10, and INF-gamma in spleen and liver extracts and supernatant cultures of white spleen cells from male symptomatic and asymptomatic dogs, naturally infected by Leishmania (Leishmania) chagasi. Thirty dogs from Aracatuba, São Paulo, Brazil, an endemic leishmaniosis area, were selected by positive ELISA serological reaction for Leishmania sp. and divided into two groups: asymptomatic (n=15) and symptomatic (n=15) consisting of animals with at least three characteristic signs (fever, dermatitis, lymphoadenopathy, onychogryphosis, weight loss, cachex a, locomotion problems, conjunctivitis, epistaxis, hepatosplenomegaly, edema, and apathy). After euthanasia, spleen and liver fragments were collected for ex vivo quantification of TGF-beta(1), IL-10, and INF-gamma. Naturally active in vitro produced TGF-beta(1) was also evaluated in spleen cell culture supernatant. Spleen and liver extract of asymptomatic dogs had higher mean TGF-beta(1) levels than symptomatic dogs. High concentrations of IL-10 were found in spleen, and mainly in liver extract of both groups. Higher INF-gamma concentrations were found in spleen extracts of symptomatic dogs, and in liver extracts of asymptomatic dogs. Extract of this cytokire was lower in spleen extract. Although INF-gamma is being produced in canine infection, mean levels of TGF-beta(1) and IL-10 from spleen and liver extracts were quantitatively much higher; suggesting that immune response in both asymptomatic and symptomatic dogs A as predominantly type Th2. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
1. We investigated the possible potentiating effect of chloramphenicol succinate (30 mg/kg, every 12 h for 4 days, ip) on the response of polymorphonuclear neutrophils to carrageenin (150 mug, ip) or dextran (100 mug, ip) in the peritoneal cavity of male Wistar rats (180-230 g; N = 12 in each group).2. Chloramphenicol potentiated the cell migration induced by carrageenin (35%) but not that induced by dextran. Previous macrophage depletion in the peritoneal cavity by washing with sterile saline abolished the cell response, whereas a previous thioglycollate-induced increase in macrophage numbers enhanced the potentiating effect (60%).3. These results suggest that the potentiating effect on polymorphonuclear neutrophil migration induced by chloramphenicol may be related to chemotactic factors released by macrophages.
Resumo:
Gap junctions are connexin-formed channels that play an important role in intercellular communication in most cell types. In the immune system, specifically in macrophages, the expression of connexins and the establishment of functional gap junctions are still controversial issues. Macrophages express P2X(7) receptors that, once activated by the binding of extracellular ATP, lead to the opening of transmembrane pores permeable to molecules of up to 900 Da. There is evidence suggesting an interplay between gap junctions and P2 receptors in different cell systems. Thus, we used ATP-sensitive and -insensitive J774.G8 macrophage cell lines to investigate this interplay. To study junctional communication in J774-macrophage-like cells, we assessed cell-to-cell communication by microinjecting Lucifer Yellow. Confluent cultures of ATP-sensitive J774 cells (ATP-s cells) are coupled, whereas ATP-insensitive J774 cells (ATP-i cells), derived by overexposing J774 cells to extracellular ATP until they do not display the phenomenon of ATP-induced permeabilization, are essentially uncoupled. Western-blot and reverse-transcription polymerase chain reaction assays revealed that ATP-s and ATP-i cells express connexin43 (Cx43), whereas only ATP-s cells express the P2X(7) receptor. Accordingly, ATP-i cells did not display any detectable ATP-induced current under whole-cell patch-clamp recordings. Using immunofluorescence microscopy, Cx43 reactivity was found at the cell surface and in regions of cell-cell contact of ATP-s cells, whereas, in ATP-i cells, Cx43 immunoreactivity was only present in cytosolic compartments. Using confocal microscopy, it is shown here that, in ATP-s cells as well as in peritoneal macrophages, Cx43 and P2X(7) receptors are co-localized to the membrane of ATP-s cells and peritoneal macrophages.