436 resultados para Hydrogen peroxide thermal analysis
Resumo:
The purpose of this study was to evaluate the influence of different light sources for in-office bleaching on surface microhardness of human enamel. One hundred and five blocks of third molars were distributed among seven groups. The facial enamel surface of each block was polished and baseline Knoop microhardness of enamel was assessed with a load of 25 g for 5 s. Subsequently, the enamel was treated with 35% hydrogen peroxide bleaching agent and photo-activated with halogen light (group A) during 38 s, LED (group B) during 360 s, and high intensity diode laser (group C) during 4 s. The groups D (38 s), E (360 s), and F (4 s) were treated with the bleaching agent without photo-activated. The control (group G) was only kept in saliva without any treatment. Microhardness was reassessed after 1 day of the bleaching treatment, and after 7 and 21 days storage in artificial saliva. The mean percentage and standard deviation of microhardness in Knoop Hardness Number were: A 97.8 +/- 13.1 KHN; B 95.5 +/- 12.7 KHN; C 84.2 +/- 13.6 KHN; D 128.6 +/- 20.5 KHN; E 133.9 +/- 14.2 KHN; F 123.9 +/- 14.2 KHN; G 129.8 +/- 18.8 KHN. Statistical analysis (p < 0.05; Tukey test) showed that microhardness percentage values were significantly lower in the groups irradiated with light when compared with the non-irradiated groups. Furthermore, the non-irradiated groups showed that saliva was able to enhance the microhardness during the measurement times. The enamel microhardness was decreased when light sources were used during the bleaching process and the artificial saliva was able to increase microhardness when no light was used.
Bioinformatical and in vitro approaches to essential oil-induced matrix metalloproteinase inhibition
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An Arabidopsis thaliana cDNA clone encoding a plant uncoupling mitochondrial protein (AtPUMP1) was overexpressed in transgenic tobacco plants. Analysis of the AtPUMP1 mRNA content in the transgenic lines, determined by Northern blot, revealed variable levels of transgene expression. Antibody probing of Western blots of mitochondrial proteins from three independent transgenic lines showed significant accumulation of AtPUMP1 in this organelle. Overproduction of AtPUMP1 in transgenic tobacco plants led to a significant increase in tolerance to oxidative stress promoted by exogenous hydrogen peroxide as compared to wild-type control plants. These results provide the first biological evidence for a role of PUMP in protection of plant cells against oxidative stress damage.
Resumo:
Stress is a generic term that summarizes how psychosocial and environmental factors influence physical and mental well-being. The interaction between stress and immunity has been widely investigated, involving the neuroendocrine system and several organs. Assays using natural products in stress models deserve further investigation. Propolis immunomodulatory action has been mentioned and it has been the subject of scientific investigation in our laboratory. The aim of this study was to evaluate if and how propolis activated macrophages in BALB/c mice submitted to immobilization stress, as well as the histopathological analysis of the thymus, bone marrow, spleen and adrenal glands. Stressed mice showed a higher hydrogen peroxide (H2O2) generation by peritoneal macrophages, and propolis treatment potentiated H2O2 generation and inhibited nitric oxide (NO) production by these cells. Histopathological analysis showed no alterations in the thymus, bone marrow and adrenal glands, but increased germinal centers in the spleen. Propolis treatment counteracted the alterations found in the spleen of stressed mice. New research is being carried out in order to elucidate propolis immunomodulatory action during stress.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The Brazilian sugarcane industry shows a great amount of generated sludge which should be utilized adequately. Two sludge samples, aerobic and anaerobic, were collected. Both were evaluated by thermogravimetry and differential thermal analysis (DTA) as well as X-ray power diffraction. These compounds show variations of mass between 30 and 140 A degrees C due to the dehydration stage. The DTA curves show that the compounds have an exothermic reaction between 450 and 550 A degrees C, which indicates that this can be used as an energy source. Details concerning the kinetic parameters of the dehydration and thermal decomposition have also been described here. The kinetic study of these stages was evaluated in open crucibles under nitrogen atmosphere. The obtained data were evaluated with the isoconversional kinetic method. The results show that different activation energies were obtained for thermal decomposition.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: To quantify the amount of peroxide penetration from the pulp chamber to the external surface of teeth during the walking bleaching technique. Methods: Seventy-two bovine lateral incisors were randomly divided over five experimental groups and one control (n = 12 per group): (1) 35% hydrogen peroxide (HP); (2) 35% carbamide peroxide (CP); (3) sodium perborate (SP); (4) (HP+SP); (5) (CP+SP) and (6) Control (CG), deionized water. All groups were treated according to the walking bleach technique. After 7 days at 37 degrees C in an acetate buffer solution, 100 mu l violet leukocrystal coloring and 50 mu l peroxidase was added, producing a blue stain that could be measured in a spectrophotometer and then converted into peroxide mu g/ml. Results: G5 exhibited the greatest penetration, while G2 and G3 produced the lowest values. All bleaching agents penetrated from the pulp chamber to the external root surface. There was a direct correlation between the presence of oxidative agents and penetration potential. Sodium perborate in distilled water was less oxidative and appeared to be the least aggressive bleaching agent. (Am J Dent 2010;23:171-174).
Resumo:
This study evaluated the influence of surfactants on the effectiveness of 35% hydrogen peroxide (HP) and 10% carbamide peroxide (CP) bleaching gels. One hundred and forty bovine teeth were used, which were stained by immersion in a coffee, red wine, and tobacco mixture for 7 days. At the end of this process, the color measurement at baseline was taken with the Vita Easyshade spectrophotometer. The teeth were divided into seven groups: (a) negative control (NC), (b) positive control for HP (PC-35), (c) HP + Tween 20 (T20-35), (d) HP + laurel sodium sulfate (LSS-35), (e) positive control for CP (PC-10), (f) CP + Tween 20 (T20-10), and (g) CP + laurel sodium sulfate (LSS-10). Group NC was kept in artificial saliva for 21 days. Groups PC-35, T20-35, and LSS 35 received three applications of bleaching gel for 10 min; the process was repeated after 7 days. Groups PC-10, T20-10, and LSS-10 received the gel for 8 h per day for 14 days. After the bleaching process, the final color was measured. The analysis of variance and Tukey tests showed statistically significant differences for the parameters of a dagger L, a dagger b, and a dagger E of the HP gels with surfactant and positive control group (PC-35). Within the limits of this in vitro study, the addition of surfactants to HP bleaching gel increased the bleaching effectiveness.
Resumo:
Purpose: This study compared five types of chemical catalyzing agents added to 35% hydrogen peroxide gel, with regard to their capacity of intensifying in-office dental bleaching results.Methods: One-hundred and twenty bovine incisors were used, of which the crowns and roots were cut in the incisor-apical direction, to acquire the dimensions of a human central incisor. The specimens were sectioned in the mesiodistal direction by means of two longitudinal cuts, the lingual halves being discarded. The vestibular halves received prophylaxis with a bicarbonate jet, ultrasound cleaning and acid etching on the dentinal portion. Next, the specimens were stored in receptacles containing a 25% instant coffee solution for two weeks. After the darkening period, initial measurement of the shade obtained was taken with the Easy Shade appliance, which allowed it to be quantified by the CIELab* method. The samples were divided into six groups, corresponding to the chemical activator used: a) none (CON); b) ferric chloride (CF); c) ferrous sulphate (SF); d) manganese gluconate (GM); e) manganese chloride (CM); f) mulberry root extract (RA). Each group received three 10-minute applications of the gels containing the respective activating agents. Next, a new shade measurement was made.Results: The Analysis of Variance and Tukey tests (alpha=5%) showed statistically significant differences for the shade perception values (p=0.002). Groups GM, CM and RA showed significantly higher means than the control group.Conclusion: The presence of some chemical activators is capable of resulting in a significant increase in tooth shade variation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The thermal behavior of Cu-Al alloys with 17, 19 and 21 at.%Al was examined by differential thermal analysis (DTA), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), optical microscopy (OM) and scanning electron microscopy (SEM). The presence of the gamma phase (Al4Cu9) was clearly detected for the Cu-19 at.%Al alloy and caused the alpha (2) phase disordering process in two stages. The tendency to increase the alpha (2) dissolution precipitates with the increase in the Al content seems to be reverted for compositions at about 21 at.%Al and the heating/cooling ratio seems to influence the thermal response of this process. The presence of the endothermic peak corresponding to the beta (1)--> beta transformation depends on an incomplete beta decomposition reaction. The variation of the heating rate showed that the beta (1)-->(alpha+gamma (1)) decomposition is the dominant reaction for alloys containing 19 and 21 at.%Al.
Resumo:
The effect of 4 mass% Ag addition on the thermal behavior of the Cu-9 mass% Al alloy was studied using differential scanning calorimetry (DSC), optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results showed that the presence of silver causes (Cu)-alpha+(alpha+gamma1)-->(Cu)-alpha+beta transformation to occur in two stages. In the first one, part of the produced beta phase combines with the precipitated Ag to give a silver-rich phase and in the second one the transformation is completed. The formation of this silver-rich phase seems to be enhanced at very low cooling rates.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)