167 resultados para HYDROXYLAPATITE POLY(L-LACTIDE) COMPOSITES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this research work was to obtain two formulations of ablative composites. These composites are also known as ablative structural composites, for applications in atmospherically severe conditions according to the high-temperature, hot gaseous products flow generated from the burning of solid propellants. The formulations were manufactured with phenolic resin reinforced with chopped carbon fiber. The composites were obtained by the hot compression molding technique. Another purpose of this work was to conduct the physical and chemical characterization of the matrix, the reinforcements and the composites. After the characterization, a nozzle divergent of each formulation was manufactured and its performance was evaluated through the rocket motor static firing test. According to the results found in this work, it was possible to observe through the characterization of the raw materials that phenolic resins showed peculiarities in their properties that differentiate one from the other, but did not exhibit significant differences in performance as a composite material for use in ablation conditions. Both composites showed good performance for use in thermal protection, confirmed by firing static tests (rocket motor). Composites made with phenolic resin and chopped carbon fiber showed that it is a material with excellent resistance to ablation process. This composite can be used to produce nozzle parts with complex geometry or shapes and low manufacturing cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to evaluate the potential of bacterial cellulose-hydroxyapatite (BC-HA) composites associated with osteogenic growth peptide (OGP) or pentapeptide OGP(10–14) in bone regeneration in critical-size calvarial defects in mice. In this study, the BC-HA, BC-HA-OGP, and BC-HA-OGP(10–14) membranes were analyzed at 3, 7, 15, 30, 60, and 90 days. In each period, the specimens were evaluated by micro-computed tomography (µCT), descriptive histology, gene expression of bone biomarkers by qPCR and VEGFR-2 (vascular endothelial growth factor) quantification by ELISA. Three days post-operative, Runx2, Tnfrsf11b and Bglap bone biomarkers were upregulated mainly by BC-HA OGP and BC-HA OGP(10–14) membranes, suggesting an acceleration of the osteoblast differentiation/activity with the use of these biomaterials. At 60 and 90 days, a high percentage of bone formation was observed by µCT for BC-HA and BC-HA OGP(10–14) membranes. High expression of some bone biomarkers, such as Alpl, Spp1, and Tnfrsf11b, was also observed for the same membranes on days 60 and 90. In conclusion, the BC-HA membrane promoted a better bone formation in critical-size mice calvarial defects. Nevertheless, incorporation of the peptides at the concentration of 10−9 mol L−1 did not improve bone regeneration potential in the long-term.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fiber reinforced carbon composites can be made by iterative liquid impregnation or gas phase carbon deposition routes. In both cases, at the final processing stage the carbon fiber is embedded in carbon matrix which results in unique properties such as low density, high thermal conductivity and thermal shock resistance, low thermal expansion and high modulus, in relation to other refractory materials. In the present study assembled three-directional and four-directional preforms, having 50% volume of pores, were densified by iterative cycles of thermoset resin impregnation followed by pyrolysis under inert atmosphere, until appropriate densities were achieved. The thermoset resin is converted in a carbon matrix during pyrolysis. The iterative manufacturing process of the carbon fiber reinforced carbon composites is evaluated by means of nondestructive techniques based on X-ray computed tomography and electrical resistivity. X-ray computed tomography gives a general mapping view of the filling pores of the preforms which impacts results of the electrical resistivity. After six processing cycles and heat treatments up to 2000?, the final densities of the three-directional and four-directional carbon fiber reinforced carbon composites were 1.16g/cm(3) and an electrical resistivity of approximate to 0.07m. The configuration of preforms, three-directional or four-directional, did not alter the densification profile, in terms of increasing density and reducing porosity during the processing cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ESR measurements In pressed pellets of doped Poly(3-Methylthiophene)(P3MT) were performed at 10 K and 50 K after cooling the system slowly from room temperature to 110 K, quenching to 77 K and then to 10 K. ESR line asymmetry (A/B) as a function of microwave power was observed and 9.4 GHz conductivity was obtained from Dyson's theory. The data is discussed in terms of Charge-Density Wave (CDW) depinning. At 50 K the threshold electric field is estimated to be less than 1 V/cm. At 10 K a subtle pinning of the CDW was observed around 15 mW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)