627 resultados para Eucalyptus Pauciflora
Resumo:
The climates of the central and southern regions of São Paulo state in Brazil favor pathogens such as Puccinia psidii Winter, which causes a common and severe disease in Eucalyptus plantations under 2 years old. We studied genetic parameters including genotype by environment interaction (G × E) of resistance to P. psidii rust in Eucalyptus grandis at nine sites in São Paulo State. Open-pollinated progeny from ten 'provenances' were established in a randomized complete block design; at individual sites there were from 134 to 160 progenies, from four to eight blocks, and five to six trees per plot. Significant provenance and progeny(provenance) differences were detected, as was G × E involving progeny(provenance). However, the G × E involved little if any rank changes, indicating that selection can be done efficiently at a single site, if the disease level is sufficient. The estimated coefficient of genetic variation among the progeny within provenances CVg was high and variable among the sites (ranging from 11 % to 36. 7 %), demonstrating different expression of genetic variability among the sites. The estimated heritability at the individual-tree level h2 and within a plot hw 2 ranged from low to intermediate (ranging from 0. 04 to 0. 46) and was high at the progeny-mean level hf 2 (ranging from 0. 30 to 0. 86). Our study shows good prospects of controlling this disease by selection among and within progenies in a single site. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
The red gum lerp psyllid Glycaspis brimblecombei Moore (Hemiptera: Psyllidae) was first recorded in Brazil in 2003 and since then has caused serious damage in Eucalyptus forests. The damage is mainly due to defoliation, sooty mold and dieback, thus requiring the development of efficient management strategies. The settling and ovipositional preference of G. brimblecombei by species and clones of Eucalyptus were evaluated in free- and no-choice tests. Preliminary tests were done to determine the density of psyllid couples that produced the greatest densities of eggs, leaf position selection for oviposition, and whether oviposition was affected by preimaginal conditioning. Apical leaves were used more frequently for oviposition by the psyllid, and the number of eggs decreased from the apex to the base. The densities of 10 and 15 psyllid couples per seedling produced the highest oviposition. There was no evidence of preimaginal conditioning. In the free-choice test, E. grandis, E. urophylla, VM-1, I-144, C-219 and H-13 were less attractive to G. brimblecombei adults, with H-13, E. grandis and E. urophylla having the least oviposition. In the no-choice test, E. urophylla, GG-100 and E. grandis also demonstrated a lower oviposition, but E. camaldulensis and 3025 were highly susceptible. The low preference for the genotypes E. grandis and E. urophylla suggests the occurrence of a non-preference type resistance against the red gum lerp psyllid. Our results can be utilized for the development of management programs for G. brimblecombei in Eucalyptus forests. © 2012 Springer Science + Business Media B.V.
Resumo:
In this paper is reported the use of the chromatographic profiles of volatiles to determine disease markers in plants - in this case, leaves of Eucalyptus globulus contaminated by the necrotroph fungus Teratosphaeria nubilosa. The volatile fraction was isolated by headspace solid phase microextraction (HS-SPME) and analyzed by comprehensive two-dimensional gas chromatography-fast quadrupole mass spectrometry (GC. ×. GC-qMS). For the correlation between the metabolic profile described by the chromatograms and the presence of the infection, unfolded-partial least squares discriminant analysis (U-PLS-DA) with orthogonal signal correction (OSC) were employed. The proposed method was checked to be independent of factors such as the age of the harvested plants. The manipulation of the mathematical model obtained also resulted in graphic representations similar to real chromatograms, which allowed the tentative identification of more than 40 compounds potentially useful as disease biomarkers for this plant/pathogen pair. The proposed methodology can be considered as highly reliable, since the diagnosis is based on the whole chromatographic profile rather than in the detection of a single analyte. © 2013 Elsevier B.V..
Resumo:
Although vast areas in tropical regions have weathered soils with low potassium (K) levels, little is known about the effects of K supply on the photosynthetic physiology of trees. This study assessed the effects of K and sodium (Na) supply on the diffusional and biochemical limitations to photosynthesis in Eucalyptus grandis leaves. A field experiment comparing treatments receiving K (+K) or Na (+Na) with a control treatment (C) was set up in a K-deficient soil. The net CO2 assimilation rates were twice as high in +K and 1.6 times higher in +Na than in the C as a result of lower stomatal and mesophyll resistance to CO2 diffusion and higher photosynthetic capacity. The starch content was higher and soluble sugar was lower in +K than in C and +Na, suggesting that K starvation disturbed carbon storage and transport. The specific leaf area, leaf thickness, parenchyma thickness, stomatal size and intercellular air spaces increased in +K and +Na compared to C. Nitrogen and chlorophyll concentrations were also higher in +K and +Na than in C. These results suggest a strong relationship between the K and Na supply to E. grandis trees and the functional and structural limitations to CO2 assimilation rates. © 2013 John Wiley & Sons Ltd.
Resumo:
The consequences of diversity on belowground processes are still poorly known in tropical forests. The distributions of very fine roots (diameter <1 mm) and fine roots (diameter <3 mm) were studied in a randomized block design close to the harvest age of fast-growing plantations. A replacement series was set up in Brazil with mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and a mixture with the same stocking density and 50 % of each species (50A:50E). The total fine root (FR) biomass down to a depth of 2 m was about 27 % higher in 50A:50E than in 100A and 100E. Fine root over-yielding in 50A:50E resulted from a 72 % rise in E. grandis fine root biomass per tree relative to 100E, whereas A. mangium FR biomass per tree was 17 % lower than in 100A. Mixing A. mangium with E. grandis trees led to a drop in A. mangium FR biomass in the upper 50 cm of soil relative to 100A, partially balanced by a rise in deep soil layers. Our results highlight similarities in the effects of directional resources on leaf and FR distributions in the mixture, with A. mangium leaves below the E. grandis canopy and a low density of A. mangium fine roots in the resource-rich soil layers relative to monospecific stands. The vertical segregation of resource-absorbing organs did not lead to niche complementarity expected to increase the total biomass production. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
The leaf spot (Mycosphaerella leaf disease = MLD) caused by Teratosphaeria nubilosa has caused damage in eucalypt plantations in southern and southeastern Brazil. The need to assess the disease in the field to evaluate of this damage, efficiency control, evaluation of germplasm induces to the necessity of having a visual scale for evaluation of disease. The objective was to develop a diagrammatic scale for young leaves and one for adult leaves of Eucalyptus globules for MLD. To do so, the leaves collected in the field were scanned for image analysis. The damaged area, the healthy leaf area and the external area of the same scale RGB (Red, Green, Blue) were determined. Subsequently, it was determinate the levels of severity depending on the sample distribution with seven levels for young leaves and six for adult leaves. For the visual acuity test and validate the scale, the leaves were evaluated for severity, with and without scale. With this proposed scales, the assessors showed good accuracy both for young and adult leaves with R2=0,98 and R2=0,80, respectively. The importance of the development of diagrammatic scales for assessing MLD in eucalyptus must to the fact that allows quantification of the symptoms accurately and precisely.
Resumo:
Nutrient remobilizations in tree ligneous components have been little studied in tropical forests. A complete randomized block design was installed in Brazilian eucalypt plantations to quantify the remobilizations of phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na) within stem wood. Three treatments were studied: control with neither K nor Na addition (C), 3 kmol ha-1 K applied (+K), and 3 kmol ha-1 Na applied (+Na). Biomass and nutrient contents were measured in the stem wood of eight trees destructively sampled at 1, 2, 3 and 4 years after planting in each treatment and annual rings were localized on discs of wood sampled every 3 m in half of the trees. Chemical analyses and wood density measurements were performed individually for each ring per level and per tree sampled. Nutrient remobilizations in annual rings were calculated through mass balance between two successive ages. Our results show that nutrient remobilizations within stem wood were mainly source-driven. Potassium and Na additions largely increased their concentration in the outer rings as well as the amounts remobilized in the first 2 years after the wood formation. The amount of Na remobilized in annual rings was 15 % higher in +Na than in +K the fourth year after planting despite a 34 % higher production of stem wood in +K leading to a much higher nutrient sink. A partial substitution of K by Na in the remobilizations within stem wood might contribute to enhancing Eucalyptus grandis growth in K-depleted soils. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The introduction of nitrogen fixing species (NFS) in fast-growing tree plantations is an alternative option to reduce fertilizer inputs. However, the success of mixed-species plantations depends on the balance between positive interactions among species (resulting from facilitation and/or complementarity) and the negative effects of interspecific competition.Using a carbon budget approach and coupling measurements of standing biomass, aboveground litterfall and soil CO2 efflux, we assessed the influence of replacing half of eucalypt trees by Acacia mangium on total belowground carbon flux (TBCF), net primary production (NPP) and its partitioning between above- and belowground growth at two tropical sites in Brazil (Itatinga) and in Congo (Kissoko) exhibiting contrasting climates, edaphic conditions and wood productions.Annual soil CO2 efflux (FS) was significantly lower in the acacia monocultures than in eucalypt monocultures and mixed-species stands at both sites. Annual FS was significantly lower at Itatinga compared to Kissoko for all stands while TBCF was significantly lower in the eucalypt stands only. In the eucalypt monocultures we found a significantly lower aboveground NPP (ANPP) and wood production (wood NPP) at Kissoko compared to Itatinga that was almost fully balanced by a significantly higher belowground NPP (BNPP), leading to similar NPP. Similarly, acacia monocultures exhibited significantly higher ANPP and wood NPP at Itatinga than at Kissoko. The mixed-species stands exhibited a significantly lower wood NPP and ANPP than the eucalypt monocultures at the Brazilian site while NPP of the mixture was not significantly different than the average NPP of the two monocultures. At the Congolese site, NPP of the mixture was significantly higher than the average NPP of the two monocultures. NPP was similar in the mixed-species stand and the eucalypt monoculture with a significantly lower partitioning of NPP to belowground production, leading to a one third higher wood biomass at harvest in the mixed-species stand.A positive effect of growing eucalypts with the nitrogen fixing acacia trees on stand wood production occurred at Kissoko but not at Itatinga. Mixed-species plantations with NFS can be advocated at sites where the productive gains resulting from nitrogen fixation are not compromised by other resource limitations. © 2012 Elsevier B.V.
Resumo:
Among the most important diseases affecting Eucalyptus is Mycosphaerella Leaf Disease (MLD) caused by Mycosphaerella spp. and Teratosphaeria spp. MLD has led to significant losses in eucalypt plantations in the South and Southeast Region of Brazil, as well as in several countries such as Portugal, Spain, South Africa and Australia. Symptoms of MLD include localized necrotic spots, early defoliation in juvenile plants, stem cankers, early death of branches, and in some cases, atrophy and death. In the present study, single spore isolations from leaves of E. globulus from five locations in Brazil allowed the differentiation of species of Mycosphaerella and Teratosphaeria based on ascospore germination and growth in culture. These isolates were also subjected to sequence analysis of the ribosomal RNA internal transcribed spacer regions, which allowed their identification to species level. The results of this study showed that six species of Mycosphaerella and four species of Teratosphaeria were associated with leaves showing symptoms of MLD in E. globulus plantations in various locations of Brazil. © 2013 KNPV.
Resumo:
In Brazil, Eucalyptus grandis is a key species for wood production. However, some genotypes are susceptible to rust (Puccinia psidii), mainly in São Paulo State, where climatic conditions are favorable for its development. Rust represents a high economic risk to forest companies because of the high potential of damage to commercial eucalypt plantations. The aims of the present study were (i) to select progenies of E. grandis for stability and adaptability regarding resistance to rust at different locations; (ii) compare the selections under these different climatic conditions; and (iii) compare rust severity in the field with the theoretical model. We observed that climatic conditions were extremely influential factors for rust development, but even under favorable conditions for disease development, we found rust-resistant progenies. In sites unfavorable for rust development, we detected highly susceptible progenies. We found significant correlation among the genetic material, environmental conditions and disease symptoms, however, we observed a simple genotype-environmental interaction and significant genetic variability among the progenies. The average heritability was high among the progenies in all sites, indicating substantial genetic control for rust resistance. We also observed a good relationship between rust severity in the field and the theoretical model that considered annual average temperature and leaf wetness. © 2013 Elsevier B.V.
Resumo:
Background and Aims: Recent studies showed a positive tree response to Na addition in K-depleted tropical soils. Our study aimed to gain insight into the effects of K and Na fertilizations on leaf area components for a widely planted tree species. Methods: Leaf expansion rates, as well as nutrient, polyol and soluble sugar concentrations, were measured from emergence to abscission of tagged leaves in 1-year-old Eucalyptus grandis plantations. Leaf cell size and water status parameters were compared 1 and 2 months after leaf emergence in plots with KCl application (+K), NaCl application (+Na) and control plots (C). Results: K and Na applications enhanced tree leaf area by increasing both leaf longevity and the mean area of individual leaves. Higher cell turgor in treatments +K and +Na than in the C treatment resulting from higher concentrations of osmotica contributed to increasing both palisade cell diameters and the size of fully expanded leaves. Conclusions: Intermediate total tree leaf area in treatment +Na compared to treatments C and +K might result from the capacity of Na to substitute K in osmoregulatory functions, whereas it seemed unable to accomplish other important K functions that contribute to delaying leaf senescence. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Aquaporins have important roles in various physiological processes in plants, including growth, development and adaptation to stress. In this study, a gene encoding a root-specific tonoplast intrinsic aquaporin (TIP) from Eucalyptus grandis (named EgTIP2) was investigated. The root-specific expression of EgTIP2 was validated over a panel of five eucalyptus organ/tissues. In eucalyptus roots, EgTIP2 expression was significantly induced by osmotic stress imposed by PEG treatment. Histochemical analysis of transgenic tobacco lines (Nicotiana tabacum SR1) harboring an EgTIP2 promoter:GUS reporter cassette revealed major GUS staining in the vasculature and in root tips. Consistent with its osmotic-stress inducible expression in eucalyptus, EgTIP2 promoter activity was up-regulated by mannitol treatment, but was down-regulated by abscisic acid. Taken together, these results suggest that EgTIP2 might be involved in eucalyptus response to drought. Additional searches in the eucalyptus genome revealed the presence of four additional putative TIP coding genes, which could be individually assigned to the classical TIP1-5 groups. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)