157 resultados para Equations, Cubic.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A mapping scheme is presented which takes quantum operators associated to bosonic degrees of freedom into complex phase space integral kernel representatives. The procedure consists of using the Schrödinger squeezed state as the starting point for the construction of the integral mapping kernel which, due to its inherent structure, is suited for the description of second quantized operators. Products and commutators of operators have their representatives explicitly written which reveal new details when compared to the usual q-p phase space description. The classical limit of the equations of motion for the canonical pair q-p is discussed in connection with the effect of squeezing the quantum phase space cellular structure. © 1993.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An infinite hierarchy of solvable systems of purely differential nonlinear equations is introduced within the framework of asymptotic modules. Eacy system consists of (2+1)-dimensional evolution equations for two complex functions and of quite strong differential constraints. It may be interpreted formally as an integro-differential equation in (1+1) dimensions. © 1988.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
In the mid-nineteenth century, french mathematicians Briot and Bouquet have proposed an intriguing graphical method for solving cubic equations "depressed" - the third degree equations that do not have the quadratic term. The proposal is simple geometric construction, though based on an ingenious algebra. We propose here the verification and testing graphical method through an instructional sequence using the software GeoGebra also present the ingenious algebraic development that resulted in this graphic method for determination of real roots of a cubic equation of the type x³ + px + q = 0 where p and q are real numbers. The method states that these solutions are summarized in the abscissas of the points of intersection of the circumference containing the origin and the center C (-q/2, 1-p/2) with the parable y = x².
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)