153 resultados para Entropy
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In recent decades, two research themes have been prominent in the academic and organizational setting: lean manufacturing and green management. Since 1996, when Florida (1996) wrote an article focusing on the synergy between these two areas, the debate if “Lean is Green?” enters in the academic field. It is in this context that this research presents the results of a systematic literature on the topic, focusing on the characteristics, positive and negative impacts, lean paradigms, green paradigms and design of supply chains. To perform this procedure it were followed the methodological footsteps of Lage Junior and Godinho Filho (2010). The research occurred in the database Scopus and it was conducted from June, 2012 to July, 2012.The key word used was “green lean” and as search filter it were included only articles and conference Papers. Their main result is a deep analysis of the accumulated knowledge on the subject, where it is revealed that the majority of studies point to the synergy between some components of the lean manufacturing system in relation to environmental management. The research gap found is related to articles that address the entropy of the union of lean and green systems.
Resumo:
A mathematical model is developed for an irreversible Brayton cycle with regeneration, inter-cooling and reheating. The irreversibility are from the thermal resistance in the heat exchangers, the pressure drops in pipes, the non-isentropic behavior in the adiabatic expansions and compressions and the heat leakage to the cold source. The cycle is optimized by maximizing the ecological function, which is achieved by the search for optimal values for the temperatures of the cycle and for the pressure ratios of the first stage compression and the first stage expansion. The advantages of using the regenerator, intercooler and reheater are presented by comparison with cycles that do not incorporate one or more of these processes. Optimization results are compared with those obtained by maximizing the power output and it is concluded that the point of maximum ecological function has major advantages with respect to the entropy generation rate and the thermal efficiency, at the cost of a small loss in power.