224 resultados para Daisy Grisolia
Resumo:
Fluoride has widely been used in Dentistry because it is a specific and effective caries prophylactic agent. However, excess fluoride may represent a hazard to human health, especially by causing injury on genetic apparatus. Genotoxicity tests constitute an important part of cancer research for risk assessment of potential carcinogens. In this study, the potential DNA damage associated with exposure to fluoride was assessed by the single cell gel (comet) assay in vitro. Mouse lymphoma and human fibroblast cells were exposed to sodium fluoride (NaF) at final concentration ranging from 7 to 100 μg/mL for 3 h at 37μC. The results pointed out that NaF in all tested concentrations did not contribute to DNA damage as depicted by the mean tail moment and tail intensity for both cellular types assessed. These findings are clinically important because they represent a valuable contribution for evaluation of the potential health risk associated with exposure to agents usually used in dental practice.
Resumo:
Chloroform and eucalyptol are widely used in clinical dentistry as gutta-percha solvents. However, these compounds may represent a hazard to human health, especially by causing injury to genetic apparatus and/or inducing cellular death. In this study, the genotoxic and cytotoxic potentials associated with exposure to chloroform and eucalyptol were assessed on mouse lymphoma cells in vitro by the single cell gel (comet) assay and trypan blue exclusion test, respectively. Both gutta-percha solvents proved to be cytotoxic at the same levels in concentrations of 2.5, 5 and 10 μL/mL (p<0.05). On the other hand, neither of the solvents induced DNA breakage. Taken together, these results suggest that although both tested compounds (chloroform and eucalyptol) are strong cytotoxicants, it seems that they are not likely to increase the level of DNA damage on mammalian cells.
Resumo:
The most used animal models in oral cancer research are the hamster treated by dimethylbenzanthracene (DMBA), and the rat treated by 4-nitroquinoline 1-oxide (4NQO). The purpose of this study was to compare the DMBA-induced hamster tongue carcinogenesis and 4NQO-induced rat tongue carcinogenesis by means of morphological analysis. Male Wistar rats were distributed into three groups of ten animals each and treated with 50 ppm 4NQO solution by drinking water for 4, 12 or 20 weeks. A total of 18 Syrian golden hamsters were submitted to 0.5% DMBA (dissolved in acetone) topical application three times/week for 4, 12 and 20 weeks. The primary histopathological change i.e., hyperplasia and hyperkeratosis, was evidenced after 4 weeks treatment with DMBA. Regarding 12 weeks treatment, 4NQO and DMBA were able to induce morphological changes as depicted by hyperplasia and dysplasia. At 20 weeks, squamous cell carcinoma was found in the majority of animals for both carcinogens used. Taken together, our results suggest that the hamster experimental model disclosed aspects related with tongue carcinogenesis in lesser time than rats. Probably, such discrepancies depend strongly on route of administration and the susceptibility with respect to animal species. © 2006 Elsevier GmbH. All rights reserved.
Resumo:
The genotoxicity of the anaesthetic MS222 (tricaine) was analysed in fish under both in vivo and in vitro conditions. Based on results of the single cell gel/Comet assay, MS222 had no direct genotoxic effect on the experimental fish, indicating that MS222 does not induce primary DNA damage. These results suggest that the use of this important anaesthetic in aquaculture can be considered to be safe in terms of genotoxicity. © Springer Science+Business Media, Inc. 2007.
Resumo:
Aflatoxin B1 (AFB1) is among the most potent naturally occurring carcinogens and classified as a group I carcinogen. Since the ingestion of aflatoxin-contaminated food is associated with several liver diseases, the aim of the present study was to evaluate the effect of 2, 20, and 200 ppb of AFB1 on DNA damage in peripheral blood lymphocytes and liver cells in Dunkin-Hartley guinea pigs. The animals were divided into four groups according to the given diet. After the treatment the lymphocytes and liver cells were isolated and DNA damage determined by Comet assay. The levels of DNA damage in lymphocytes were higher animals treated with 200 ppb of AFB1-enriched diet (P = 0.02). In the liver cells there were a relationship between the levels of DNA damage and the consumption of AFB1 in all studied groups. These results suggest that Comet assay performed on lymphocytes is a valuable genotoxic marker for high levels of exposure to AFB1 in guinea pig. Additionally our results indicate that the exposure to this toxin increases significantly and increases the level of DNA damage in liver cells, which is a key step on liver cancer development. We also suggest that the Comet assay is an useful tool for monitoring the genotoxicity of AFB1 in liver. © 2007 Springer Science+Business Media B.V.
Resumo:
This study aimed to evaluate whether experimental Chagas disease in acute phase under benznidazole therapy can cause DNA damage in peripheral blood, liver, heart, and spleen cells or induce nitric oxide synthesis in spleen cells. Twenty Balb/c mice were distributed into four groups: control (non-infected animals); Trypanosoma cruzi infected; T. cruzi infected and submitted to benznidazole therapy; and only treated with benznidazole. The results obtained with the single cell gel (comet) assay showed that T. cruzi was able induce DNA damage in heart cells of both benznidazole treated or untreated infected mice. Similarly, T. cruzi infected animals showed an increase of DNA lesions in spleen cells. Regarding nitric oxide synthesis, statistically significant differences (p < 0.05) were observed in all experimental groups compared to negative control, the strongest effect observed in the T. cruzi infected group. Taken together, these results indicate that T. cruzi may increase the level of DNA damage in mice heart and spleen cells. Probably, nitric oxide plays an important role in DNA damaging whereas benznidazole was able to minimize induced T. cruzi genotoxic effects in spleen cells. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Paracoccidioidomycosis is a systemic fungal infection caused by Paracoccidioides brasiliensis. As infectious diseases can cause DNA damage, the authors aimed at analyzing DNA breakage in peripheral blood cells of patients with paracoccidioidomycosis by using the comet assay. The results suggested that paracoccidioidomycosis does not cause genotoxicity.
Resumo:
The comet assay has been conducted with numerous cell lines to assess in vitro genotoxicity. In order to use the comet assay as part of an in vitro test for evaluating genotoxicity, however, there are cell-specific factors that need to be better understood. In this present study we have evaluated some factors that may impact upon the DNA damage detected in whole blood (WB) cells and lymphocytes (ILs). Experiments were conducted comparing responses of both cells, and investigating the effects of the female hormonal cycle, and oral contraceptive (OC) use on DNA damage detection in the in vitro comet assay, at three sampling time. No significant differences were detected in the basal levels of DNA damage detected in ILs and WB cells from women OC users and non-users and from men. Basal DNA damage in ILs was unaffected by gender and stage of the menstrual cycle or the stage of the treatment schedule. Our results also indicated that the H2O2 induces DNA damage in human lymphocytes independently of gender, low-dose OC use and hormonal fluctuation. However, data showed that in 3rd sampling of menstrual cycle, lymphocytes were more resistant to H2O2-induced DNA damage than those from OC users and men. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
The microsatellite loci FCA045, FCA077, FCA008, and FCA096 are highly variable molecular markers which were used to determine the genetic diversity in 148 captive Leopardus sp. The PCR-amplified products of microsatellite loci were characterized in ABI Prism 310 Genetic Analyzer. Allele numbers, heterozygosity, polymorphism information content, exclusive allele number, and shared alleles were calculated. Sixty-five alleles were found and their sizes ranged from 116 to 216 bp in four microsatellite loci. The heterozygosity ranged from 0.36 to 0.81 in Leopardus pardalis, 0.57 to 0.67 in L. tigrinus and 0.80 to 0.92 in L. wiedii. The polymorphism information content was from 0.80 to 0.88 in L. pardalis, 0.76 to 0.88 in L. tigrinus and 0.77 to 0.90 in L. wiedii. The margay (L. wiedii) showed the highest index of polymorphism among the three species in this study. These results imply that microsatellite DNA markers can help in the study of the genetic diversity of Leopardus specimens. ©FUNPEC-RP.
Resumo:
Background: Atherosclerotic coronary artery disease (CAD) is a multifactorial process that appears to be caused by the interaction of environmental risk factors with multiple predisposing genes. It is nowadays accepted that increased levels of DNA damage induced by xenobiotics play an important role in the early phases of atherogenesis. Therefore, in this study, we focus on determining whether genetic variations in xenobiotic-metabolizing [glutathione-S-transferase theta 1 (GSTT1), glutathione-S-transferase mu 1 (GSTM1), cytochrome P450 IIEI (CYP2E1)] and DNA repair [X-ray cross-complementing group 1 (XRCC1)] genes might be associated with increased risk for CAD. Methods: A case-control study was conducted with 400 individuals who underwent subjected to coronary angiography. A total of 299 were patients diagnosed with effective coronary atherosclerosis (case group; >20% obstructive lesion), and 101 (control group) were individuals diagnosed as negative for CAD (<20% obstructive lesions). The polymorphism identifications for GSTM1 and GSTT1, and for CYP2E1 and XRCC1 genes were performed by polymerase chain reaction (PCR) amplification and by PCR-RFLP, respectively. Results and conclusions: The XRCC1 homozygous wild-type genotype Arg/Arg for codon 399 was statistically less pronounced in the case subjects (21.4%) than in controls (38.5%); individuals with the variant XRCC1 genotype had a 2.3-fold increased risk for coronary atherosclerosis than individuals with the wild-type genotype (OR=2.3, 95% CI=1.13-4.69). Conversely, no association between GSTM1, GSTT1, and CYP2E1gene polymorphisms and coronary atherosclerosis was detected. The results provide evidence of the role of DNA damage and repair in cardiovascular disease. © 2011 Elsevier Inc. All rights reserved.
Resumo:
The objective of this work was to evaluate photodynamic therapy (PDT) by using a hematoporphyrin derivative as a photosensitizer and light-emitting diodes (LEDs) as light source in induced mammary tumors of Sprague-Dawley (SD) rats. Twenty SD rats with mammary tumors induced by DMBA were used. Animals were divided into four groups: control (G1), PDT only (G2), surgical removal of tumor (G3), and submitted to PDT immediately after surgical removal of tumor (G4). Tumors were measured over 6 weeks. Lesions and surgical were LEDs lighted up (200 J/cm2 dose). The light distribution in vivo study used two additional animals without mammary tumors. In the control group, the average growth of tumor diameter was approximately 0.40 cm/week. While for PDT group, a growth of less than 0.15 cm/week was observed, suggesting significant delay in tumor growth. Therefore, only partial irradiation of the tumors occurred with a reduction in development, but without elimination. Animals in G4 had no tumor recurrence during the 12 weeks, after chemical induction, when compared with G3 animals that showed 60 % recurrence rate after 12 weeks of chemical induction. PDT used in the experimental model of mammary tumor as a single therapy was effective in reducing tumor development, so the surgery associated with PDT is a safe and efficient destruction of residual tumor, preventing recurrence of the tumor. © 2012 Springer-Verlag London Ltd.
Resumo:
Background: Periodontal disease during pregnancy has been recognized as one of the causes of preterm and lowbirth- weight (PLBW) babies. Several studies have demonstrated that PLBW babies are prone to developing insulin resistance as adults. Although there is controversy over the association between periodontal disease and PLBW, the phenomenon known as programming can translate any stimulus or aggression experienced during intrauterine growth into physiologic and metabolic alterations in adulthood. The purpose of the present study is to investigate whether the offspring of rats with periodontal disease develop insulin resistance in adulthood. Methods: Ten female Wistar rats were divided into periodontal disease (PED) and control (CN) groups. All rats were mated at 7 days after induction of periodontal disease. Male offspring were divided into two groups: 1) periodontal disease offspring (PEDO; n = 24); and 2) control offspring (CNO; n = 24). Offspring body weight was measured from birth until 75 days. When the offspring reached 75 days old, the following parameters were measured: 1) plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and tumor necrosis factor-α (TNF-α); 2) insulin sensitivity (IS); and 3) insulin signal transduction (IST) in insulin-sensitive tissues. Results: Low birth weight was not detected in the PEDO group. However, plasma concentrations of glucose, insulin, fructosamine, lipase, amylase, and TNF-α were increased and IS and IST were reduced (P <0.05) in the PEDO group compared with the CNO group. Conclusion: Maternal periodontal disease may induce insulin resistance and reduce IST in adult offspring, but such alterations are not attributable to low birth weight.
Resumo:
Microparticles found in the air may be associated with organic matter that contains several compounds, such as Polycyclic Aromatic Hydrocarbons (PAHs) and nitro-PAHs, and may pose a significant risk to human health, possibly leading to DNA mutations and cancers. This study associated genotoxicity assays for evaluating human exposure with the atmospheric air of two urban areas in southern Brazil, that received different atmospheric contributions. Site 1 was under urban-industrial influence and the other was a non-industrial reference, Site 2. Organic extracts from the airborne particulate matter were tested for mutagenicity via the Salmonella/microsome assay and analyzed for PAH composition. Cells samples of people residing in these two cities were evaluated using the comet and micronucleus assay (MN).Concentrations of the individual PAHs ranged from 0.01ng/m3 (benzo[a]anthracene) to 5.08ng/m3 (benzo[ghi]perylene). As to mutagenicity analysis of airborne, Site 1 presented all the mutagenic responses, which varied from 3.2±1.22rev/m3 (TA98 no S9) to 32.6±2.05rev/m3 (TA98, S9), while Site 2 ranged from negative to minimal responses. Site 1 presented a high quantity of nitro and amino derivatives of PAHs, and peaked at 56.0±3.68rev/μg (YG1024 strain). The two groups presented very low DNA damage levels without intergroup difference. Although Site 1 presented high mutagenic responses in the air samples, high PAH levels, healthy people exposed to this environment did not show significative damage in their genetic material. However, the evaluation of different environmental and genetic damage in such population is necessary to monitor possible damages. © 2013 Elsevier Inc.
Resumo:
Introduction: Inflammatory cytokines are associated with decreased insulin signal transduction. Moreover, local oral inflammation, such as that accompanying periodontal disease, is associated with insulin resistance and type 2 diabetes mellitus. The aim of this study was to evaluate the effect of periapical lesions (PLs) on insulin signaling and insulin sensitivity in rats. We hypothesized that PLs alter systemic insulin signaling and insulin sensitivity via elevated plasmatic tumor necrosis factor α (TNF-α). Methods: Wistar rats were divided into control (CN) and PL groups. PLs were induced by exposing pulpal tissue to the oral environment. After 30 days, insulin sensitivity was measured using the insulin tolerance test. After euthanization, maxillae were processed for histopathology. Plasmatic concentrations of tumor necrosis factor α (TNF-α) were determined via the enzyme-linked immunosorbent assay. Insulin signal transduction was evaluated using insulin receptor substrate tyrosine phosphorylation status and serine phosphorylation status in periepididymal white adipose tissue via Western blotting. For insulin signaling and insulin tolerance tests, the analyses performed were analysis of variance followed by the Tukey post hoc test. For TNF-α analysis, the Student's t test was used. In all tests, P <.05 was considered significant. Results: The rats with PLs showed higher plasmatic TNF-α, lower constant rate for glucose disappearance values, and reduced pp185 tyrosine phosphorylation status but no change in serine phosphorylation status in white adipose tissue after insulin stimulation. Conclusions: PLs can cause alterations to both insulin signaling and insulin sensitivity, probably because of elevation of plasmatic TNF-α. The results from this study emphasize the importance of the prevention of local inflammatory diseases, such as PLs, with regard to the prevention of insulin resistance. Copyright © 2013 American Association of Endodontists.
Resumo:
Advances in DNA technology have created biotechnological tools that can be used in animal selection and new strategies for increasing herd productivity and quality. The objective of the present work was to associate the genotypes of leptin gene exon 2 polymorphisms with productive traits in Nellore cattle. Blood was collected from Nellore males and PCR-RFLP reactions were performed with the restriction enzymes ClaI and Kpn2I. The gene frequencies resulting from digestion by ClaI were 0.60 and 0.40 for allele A and T, respectively; the genotypic frequencies were AA = 0.20 and AT = 0.80. The gene frequencies from digestion by Kpn2I were 0.81 for allele C and 0.194 for allele T; the genotypic frequencies were CC = 0.62 and CT = 0.38. The populations in both cases were not in Hardy-Weinberg equilibrium (p > 0.05), and the TT genotype was not found. Significant associations were noted between leptin gene exon 2 polymorphisms and five productive traits in Nellore cattle: carcass fat distribution, the intensity of red muscle coloration, pH, marbling, and post-slaughter fat thickness. © 2013 Copyright Taylor and Francis Group, LLC.