401 resultados para Comet assay


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous studies in rodents treated with the pro-carcinogen 1,2-dimethylhydrazine suggested that the consumption of wheat bran protected against DNA damage in the colon and rectum. Based on this information, we evaluated wheat bran as a functional food in the prevention and treatment of colon cancer. We used the aberrant crypt focus assay to evaluate the anticarcinogenic potential of wheat bran (Triticum aestivum variety CD-104), the comet assay to evaluate its antigenotoxicity potential, and the micronucleus assay to evaluate its antimutagenic potential. The wheat bran gave good antimutagenic and anticarcinogenic responses; the DNA damage decreased from 90.30 to 26.37% and from 63.35 to 28.73%, respectively. However, the wheat bran did not significantly reduce genotoxicity. Further tests will be necessary, including tests in human beings, before this functional food can be recommended as an adjunct in the prevention and treatment of colon cancer. © FUNPEC-RP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes the efficiency of photoelectrocatalysis based on Ti/TiO2 nanotubes in the degradation of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 and to remove their toxic properties, as an alternative method for the treatment of effluents and water. For this purpose, the discoloration rate, total organic carbon (TOC) removal, and genotoxic, cytotoxic and mutagenic responses were determined, using the comet, micronucleus and cytotoxicity assays in HepG2 cells and the Salmonella mutagenicity assay. In a previous study it was found that the surfactant Emulsogen could contribute to the low mineralization of the dyes (60% after 4h of treatment), which, in turn, seems to account for the mutagenicity of the products generated. Thus this surfactant was not added to the chloride medium in order to avoid this interference. The photoelectrocatalytic method presented rapid discoloration and the TOC reduction was ≥87% after 240min of treatment, showing that photoelectrocatalysis is able to mineralize the dyes tested. The method was also efficient in removing the mutagenic activity and cytotoxic effects of these three dyes. Thus it was concluded that photoelectrocatalysis was a promising method for the treatment of aqueous samples. © 2013 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The incidence of colorectal cancer is growing worldwide. The characterization of compounds present in the human diet that can prevent the occurrence of colorectal tumors is vital. The oligosaccharide inulin is such a compound. The aim of this study was to evaluate the antigenotoxic, antimutagenic and anticarcinogenic effects of inulin in vivo. Our study is based on 3 assays that are widely used to evaluate chemoprevention (comet assay, micronucleus assay, and aberrant crypt focus assay) and tests 4 protocols of treatment with inulin (pre-treatment, simultaneous, post-treatment, and pre + continuous). Experiments were carried out in Swiss male mice of reproductive age. In order to induce DNA damage, we used the pro-carcinogenic agent 1,2-dimethylhydrazine. Inulin was administered orally at a concentration of 50 mg/kg body weight following the protocols mentioned above. Inulin was not administered to the control groups. Our data from the micronucleus assay reveal antimutagenic effects of inulin in all protocols. The percentage of inulin-induced damage reduction ranged from 47.25 to 141.75% across protocols. These data suggest that inulin could act through desmutagenic and bio-antimutagenic mechanisms. The anticarcinogenic activity (aberrant crypt focus assay) of inulin was observed in all protocols and the percentages of damage reduction ranged from 55.78 to 87.56% across protocols. Further tests, including human trials, will be necessary before this functional food can be proven to be effective in the prevention and treatment of colon cancer. © FUNPEC-RP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human eyes have a remarkable ability to recognize hundreds of colour shades, which has stimulated the use of colorants, especially for clothing, but toxicological studies have shown that some textile dyes can be hazardous to human health. Under conditions of intense perspiration, dyes can migrate from coloured clothes and penetrate into human skin. Garments made from cotton fabrics are the most common clothing in tropical countries, due to their high temperatures. Aiming to identify safe textile dyes for dyeing cotton fabrics, the genotoxicity [in vitro Comet assay with normal human dermal fibroblasts (NHDF), Tail Intensity] and mutagenicity [Salmonella/microsome preincubation assay (30 min), tester strains TA98, TA100, YG1041 and YG1042] of Reactive Blue 2 (RB2, CAS No. 12236-82-7, C.I. 61211) and Reactive Green 19 (RG19, CAS No. 61931-49-5, C.I. 205075) were evaluated both in the formulated form and as extracted from cotton fibres using different artificial sweats. Both the dyes could migrate from cotton fibres to sweat solutions, the sweat composition and pH being important factors during this extraction. However, the dye sweat solutions showed no genotoxic/mutagenic effects, whereas a weak mutagenic potential was detected by the Ames test for both dyes in their formulated form. These findings emphasize the relevance of textile dyes assessment under conditions that more closely resemble human exposure, in order to recognize any hazard. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The malaria treatment recommended by the World Health Organization involves medicines derived from artemisinin, an active compound extracted from the plant Artemisia annua, and some of its derivatives, such as artesunate. Considering the lack of data regarding the genotoxic effects of these compounds in human cells, the objective of this study was to evaluate the cytotoxicity and genotoxicity, and expressions of the CASP3 and SOD1 genes in a cultured human hepatocellular liver carcinoma cell line (HepG2 cells) treated with artemisinin and artesunate. We tested concentrations of 2.5, 5, 7.5, 10, and 20 μg/mL of both substances with a resazurin cytotoxicity assay, and the concentrations used in the genotoxicity experiments (2.5, 5, and 10 μg/mL) and gene expression analysis (5 mg/mL) were determined. The results of the comet assay in cells treated with artemisinin and artesunate showed a significant dosedependent increase (P < 0.001) in the number of cells with DNA damage at all concentrations tested. However, the gene expression analysis revealed no significant change in expression of CASP3 or SOD1. Our data showed that although artemisinin and artesunate exhibited genotoxic effects in cultured HepG2 cells, they did not significantly alter expression of the CASP3 and SOD1 genes at the doses tested. ©FUNPEC-RP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Brown propolis is the major type of propolis found in Cuba; its principal component is nemorosone, the major constituent of Clusia rosea floral resins. Nemorosone has received increasing attention due to its strong in vitro anti-cancer action. The citotoxicity of nemorosone in several human cancer cell lines has been reported and correlated to the direct action it has on the estrogen receptor (ER). Breast cancer can be treated with agents that target estrogen-mediated signaling, such as antiestrogens. Phytoestrogen can mimic or modulate the actions of endogenous estrogens and the treatment of breast cancer with phytoestrogens may be a valid strategy, since they have shown anti-cancer activity.Methods: The aim of the present investigation was to assess the capacity of nemorosone to interact with ERs, by Recombinant Yeast Assay (RYA) and E-screen assays, and to determine by comet assay, if the compound causes DNA-damaging in tumoral and non-tumoral breast cells.Results: Nemorosone did not present estrogenic activity, however, it inhibited the 17-β-estradiol (E2) action when either of both methods was used, showing their antiestrogenicity. The DNA damage induced by the benzophenone in cancer and normal breast cells presented negative results.Conclusion: These findings suggest that nemorosone may have therapeutic application in the treatment of breast cancer. © 2013 Camargo et al.; licensee BioMed Central Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hymenoptera venoms are constituted by a complex mixture of chemically or pharmacologically bioactive agents, such as phospholipases, hyaluronidases and mastoparans. Venoms can also contain substances that are able to inhibit and/or diminish the genotoxic or mutagenic action of other compounds that are capable of promoting damages in the genetic material. Thus, the present study aimed to assess the effect of the venom of Polybia paulista, a neotropical wasp, by assays with HepG2 cells maintained in culture. The cytotoxic potential of the wasp venom, assessed by the methyl thiazolyl tetrazolium assay (MTT assay), was tested for the concentrations of 10μg/mL, 5μg/mL and 1μg/mL. As these concentrations were not cytotoxic, they were used to evaluate the genotoxic (comet assay) and mutagenic potential (micronucleus test) of the venom. In this study, it was verified that these concentrations induced damages in the DNA of the exposed cells, and it was necessary to test lower concentrations until it was found those that were not considered genotoxic and mutagenic. The concentrations of 1ng/mL, 100pg/mL and 10pg/mL, which did not induce genotoxicity and mutagenicity, were used in four different treatments (post-treatment, pre-treatment, simultaneous treatment with and without incubation), in order to evaluate if these concentrations were able to inhibit or decrease the genotoxic and mutagenic action of methyl methanesulfonate (MMS). None of the concentrations was able to inhibit and/or decrease the MMS activity. The genotoxic and mutagenic activity of the venom of P. paulista could be caused by the action of phospholipase, mastoparan and hyaluronidase, which are able to disrupt the cell membrane and thereby interact with the genetic material of the cells or even facilitate the entrance of other compounds of the venom that can act on the DNA. Another possible explanation for the genotoxicity and mutagenicity of the venom can be the presence of substances able to trigger inflammatory process and, consequently, generate oxygen reactive species that can interact with the DNA of the exposed cells. © 2013 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Biocompatibility of root canal sealers is important because of the long-term contact of their eluates and/or degradation products with periapical tissues. The literature still lacks studies about the genotoxic effects of these materials and the influence of setting time on biological properties. The cytotoxicity and genotoxicity of an epoxy resin-based sealer (AH Plus), a single methacrylate-based sealer (EndoRez), and a silicone-based sealer (RoekoSeal) were assessed. Methods: Chinese hamster fibroblasts (V79) were cultured and exposed to different dilutions of extracts from the sealers that were left to set for 0, 12, and 24 hours before contact with culture medium. Cell viability was measured by the methyl-thiazol-diphenyltetrazolium assay. Genotoxicity was assessed by the comet assay. Data were statistically analyzed by Kruskal-Wallis and Dunn tests (P < .05). Results: Root canal sealers were statistically more cytotoxic than the untreated control group, except for the silicon-based sealer. Cell viability ranking was the following (from the most to the least cytotoxic): methacrylate-based > epoxy resin-based > silicone-based. The setting time influenced the epoxy resin-based sealer cytotoxicity (decreased at 12 hours) and the general genotoxicity (increased at 24 hours). DNA damage ranking was the following (from the most to the least genotoxic): methacrylate-based > silicone-based = epoxy resin-based. Conclusions: The setting time had influence on the cytotoxicity of the epoxy resin-based sealer and genotoxicity of all tested sealers. The methacrylate-based sealer was the most cytotoxic, and the silicone-based sealer was not cytotoxic. Genotoxicity was observed for all sealers. © 2013 American Association of Endodontists.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ecotoxicology of nano-TiO2 has been extensively studied in recent years; however, few toxicological investigations have considered the photocatalytic properties of the substance, which can increase its toxicity to aquatic biota. The aim of this work was to evaluate the effects on fish exposed to different nano-TiO2 concentrations and illumination conditions. The interaction of these variables was investigated by observing the survival of the organisms, together with biomarkers of biochemical and genetic alterations. Fish (Piaractus mesopotamicus) were exposed for 96h to 0, 1, 10, and 100mg/L of nano-TiO2, under visible light, and visible light with ultraviolet (UV) light (22.47J/cm2/h). The following biomarkers of oxidative stress were monitored in the liver: concentrations of lipid hydroperoxide and carbonylated protein, and specific activities of superoxide dismutase, catalase, and glutathione S-transferase. Other biomarkers of physiological function were also studied: the specific activities of acid phosphatase and Na,K-ATPase were analyzed in the liver and brain, respectively, and the concentration of metallothionein was measured in the gills. In addition, micronucleus and comet assays were performed with blood as genotoxic biomarkers. Nano-TiO2 caused no mortality under any of the conditions tested, but induced sublethal effects that were influenced by illumination condition. Under both illumination conditions tested, exposure to 100mg/L showed an inhibition of acid phosphatase activity. Under visible light, there was an increase in metallothionein level in fish exposed to 1mg/L of nano-TiO2. Under UV light, protein carbonylation was reduced in groups exposed to 1 and 10mg/L, while nucleus alterations in erythrocytes were higher in fish exposed to 10mg/L. As well as improving the understanding of nano-TiO2 toxicity, the findings demonstrated the importance of considering the experimental conditions in nanoecotoxicological tests. This work provides information for the development of protocols to study substances whose toxicity is affected by illumination conditions. © 2013 Elsevier B.V..

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC