152 resultados para Columns.
Resumo:
In this work, we discuss the procedures adopted for the design of built-up columns (laced and battened columns). Built-up columns are widely used in steel construction generally when the compression forces are relatively low and the column buckling lengths are large. They are commonly used in industrial buildings, for example, as posts for cladding, or as columns supporting a crane girder. Unlike columns with full section, in the case of built-up columns, it is necessary to evaluate the shear stiffness. In fact, the shear strength leads to a significant reduction of the critical load. In the context of this work, the components of the columns (chords, diagonals, posts, etc.) are formed by cold-formed members. In order to systematize and rationalize the verification of the built-up columns, this work aim to develop a computer program based on the standards NBR 14762, NBR 6355 and Eurocode 3, basically the considerations of the part EN 1993-1-1
Resumo:
There are regulations that establish conditions and enable the design of armor columns. The NBR 6118 features statements relating to the transverse reinforcement as spacing, reinforcement diameters provision in structural elements and others. However, the norm in force does not provide an explicit methodology for the design of stirrups in different situations. We do not propose even a calculation model for this equipment and provides normative considerations for maximum or minimum values of spacings and armor in diameter. It is noteworthy that the classical references also do not provide a calculation routine sizing of transverse reinforcement and only makes the checks as the normative conditions for the given data. Based on this assumption and the problems that may occur in sizing error, both for spacing and for the proposal of the stirrup diameter, this study demonstrates that armor calculation method already established in the literature and then through an intuitive tool and available develops a spreadsheet based on this calculation routine. It takes as reference the one developed by Emil Moersch (1902) and the calculation model proposed by BUFFONI E SILVA (2006). Finally the paper presents a rational design of shear reinforcement and confronts these values with some numerical examples to show its truth