238 resultados para Cobalt ferrite nanoparticles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SiO2 (1-x) - TiO2 (x) waveguides, with the mole fraction x in the range 0.07 - 0.20 and thickness of about 0.4 μm, were deposited on silica substrates by a dip-coating technique. The thermal treatments at 700-900°C, used to fully densify the xerogels, produce nucleation of TiO2 nanocrystals even for the lowest TiO2 content. The nucleation of TiO2 nanocrystals and their growth by thermal annealing up to 1300°C were studied by waveguide Raman spectroscopy, for the SiO2 (0.8) - TiO2 (0.2) composition. By increasing the annealing temperature, the Raman spectrum evolves from that typical of the silica-titania glass to that of anatase, but brookite phase is dominant at intermediate temperatures. In the low. frequency region (5-50 cm-1) of the Raman spectra, acoustic vibrations of the nanocrystals are observed. From the measured line shapes, we can deduce the size distribution of the particles. The results are compared with those obtained from the line widths in the X-ray diffraction patterns. Nanocrystals with a mean size in the range 4-20 nm are obtained, by thermal annealing in a corresponding range of 800-1300°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protection efficiency against water corrosion of fluorozirconate glass, ZBLAN, dip-coated by nanocrystalline tin oxide film containing the organic molecule Tiron® was investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The chemical bonding structure of the surface region and morphology were studied before and after two water exposure periods of 5 and 30 min. The results of the analysis for the as-grown sample revealed a SnO1.6 phase containing carbon and sulfur, related to Tiron®, and traces of elements related to ZBLAN (Zr, F, Ba). This fact and the clear evidence of the presence of tin oxifluoride specie (SnOxF y) indicates a diffusion of the glass components into the porous coating. After water exposure, the increase of the oxygen concentration accompanied by a strong increase of Zr, F, Ba and Na content is interpreted as filling of the nanopores of the film by glass compounds. The formation of a compact protective layer is supported by the morphological changes observed by AFM. © 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of the nasal route for drug delivery has attracted much interest in recent years in the pharmaceutical field. Local and principally systemic drug delivery can be achieved by this route of administration. But the nasal route of delivery is not applicable to all drugs. Polar drugs and some macromolecules are not absorbed in sufficient concentration due to poor membrane permeability, rapid clearance and enzymatic degradation into the nasal cavity. Thus, alternative means that help overcome these nasal barriers are currently in development. Absorption enhancers such as phospholipids and surfactants are constantly used, but care must be taken in relation to their concentration. Drug delivery systems including liposomes, cyclodextrins, micro- and nanoparticles are being investigated to increase the bioavailability of drugs delivered intranasally. This review article discusses recent progress and specific development issues relating to colloidal drug delivery systems in nasal drug delivery. © 2006 Bentham Science Publishers Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric nanoparticles have received great attention as potential controlled drug delivery systems. Biodegradable polymers has been extensively used in the development of these drug carriers, and the polyesters such as polylactic acid, polyglycolic acid and their copolymers as poly-lactide-co- glycolide are the most used, considering its biocompatibility and biodegradability. Thermal analysis techniques have been used for pharmaceutical substances for more than 30 years and are routine methods for screening drug-excipient interactions. The aim of this work is to use thermal analysis to characterize PLGA nanoparticles containing a hydrophobic drug, praziquantel. The results show that the drug is in an amorphous state or in disordered crystalline phase of molecular dispersion in the PLGA polymeric matrix and that the microencapsulation process did not interfere with the chemical structure of the polymer, mantaining the structural drug integrity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanum chromite (LaCrO3) is one of the most adequate materials for use as interconnector in solid oxide fuel cell (SOFC) applications, due to its intrinsic properties, namely its good electrical conductivity and resistance to environment conditions in fuel cell operations. Due to difficulties in sintering, additives are usually added to help in the densification process. In this work, the influence of added cobalt and strontium, in the sintering of LaCrO3 obtained by combustion synthesis was studied. The starting materials were respectively nitrates of chromium, lanthanum, cobalt and strontium, and urea was used as fuel. The results show that by increasing the strontium and cobalt concentrations it is possible to reduce the temperature of sintering. Using both additives, the sintering processes took place in lesser times than normally used for this material, as well as greater values of density were attained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cationic polysaccharide chitosan has been widely used for non-viral transfection in vitro and in vivo and has many advantages over other polycations. Chitosan is biocompatible and biodegradable and protects DNA against DNase degradation. However following administration the ChitosanDNA polyplexes must overcome a series of barriers before DNA is delivered to the cell nucleus. This paper describes the most important parameters involved in the chitosan-DNA interaction and their effects of on the condensation, shape, size and protection of DNA. Strategies developed for chitosanDNA polyplexes to avoid non-specific interaction with blood components and to overcome intracellular obstacles as the crossing of die cell membrane, endosomal escape and nuclear import are presented. © 2006 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on the magnetoelectric coupling (ME) at room temperature in lanthanum modified bismuth ferrite thin film (BLFO) deposited on SrRuO 3-buffered Pt/TiO 2/SiO 2/Si(100) substrates by the soft chemical method. BLFO film was coherently grown at a temperature of 500 °C. The magnetoelectric coefficient measurement was performed to evidence magnetoelectric coupling behavior. Room temperature magnetic coercive field indicates that the film is magnetically soft. The maximum magnetoelectric coefficient in the longitudinal direction was close to 12 V/cmOe. Dielectric permittivity and dielectric loss demonstrated only slight dispersion with frequency due the less two-dimensional stress in the plane of the film. Polarization reversal was investigated by applying dc voltage through a conductive tip during the area scanning. We observed that various types of domain behavior such as 71 ° and 180° domain switching, and pinned domain formation occurred. Copyright © 2009 American Scientific Publishers All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical characteristics of tellurite glasses containing silver nanoparticles (NPs) and the influence on the emission spectrum of Er 3+ ions were studied. The transitions 4f ↔ 4f from erbium ions, mainly the 4I13/2 → 4I15/2 transition that involve upconversion energy process, have a strongly dependence with the chemical structure of the rare earth ion. In the present work, silver nanparticles (NPs) embedded in the host vitreous material, show a significant enhance (or quenching) on the erbium fluorescence due the long-range electromagnetic interaction between the plasmon surface energy of the Ag NPs (Localized Surface Plasmon Resonance -LSPR) and the Er3+ ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: There is little information considering the framework association between cast clasps and attachments. The aim of this study was to evaluate the retention strength of frameworks match circumferential clasps and extra resilient attachment cast in three different alloys (cobalt-chromium, nickel-chromium titanium and commercially pure titanium), using two undercut (0.25 and 0.75 mm) and considering different period of time (0, 1/2, 1, 2, 3, 4 and 5 years). Methods: Using two metallic matrices, representing a partially edentulous mandibular right hemiarch with the first molar crown, canine root and without premolars, 60 frameworks were fabricated. Three groups (n = 20) of each metal were cast and each group was divided into two subgroups (n = 10), corresponding the molar undercut of 0.25 mm and 0.75 mm. The nylon male was positioned at the matrix and attached to the acrylic resin of the prosthetic base. The samples were subjected to an insertion and removal test under artificial saliva environment. Results: The data were analyzed and compared with ANOVAs and Tukey's test at 95% of probability. The groups cast in cobaltchromium and nickel-chromium-titanium had the highest mean retention strength (5.58 N and 6.36 N respectively) without significant difference between them, but statistically different from the group cast in commercially pure titanium, which had the lowest mean retention strength in all the periods (3.46 N). The association frameworks using nickel-chromium-titanium and cobalt-chromium could be used with 0.25 mm and 0.75 mm of undercut, but the titanium samples seems to decrease the retention strength, mainly in the 0.75 mm undercut. The circumferential clasps cast in commercially pure titanium used in 0.75 mm undercuts have a potential risk of fractures, especially after the 2nd year of use. Conclusion: This in vitro study showed that the framework association between cast clasp and an extra resilient attachment are suitable to the three metals evaluated, but strongly suggest extra care with commercially pure titanium in undercut of 0.75 mm. Clinical significance: Frameworks fabricated in Cp Ti tend to decrease in retentive strength over time and have a potential risk of fracture in less than 0.75 mm of undercut.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the effect of disinfection and accelerated ageing on the dimensional stability and detail reproduction of a facial silicone with different types of nanoparticle. A total of 60 specimens were fabricated with Silastic MDX 4-4210 silicone and they were divided into three groups: colourless and pigmented with nanoparticles (make-up powder and ceramic powder). Half of the specimens of each group were disinfected with Efferdent tablets and half with neutral soap for 60 days. Afterwards, all specimens were subjected to accelerated ageing. Both dimensional stability and detail reproduction tests were performed after specimen fabrication (initial period), after chemical disinfection, and after accelerated ageing periods (252, 504 and 1008 hours). The dimensional stability test was conducted using AutoCAD software, while detail reproduction was analysed using a stereoscope magnifying glass. Dimensional stability values were statistically evaluated by analysis of variance (ANOVA) followed by Tukey's test (p < 0.01). Detail reproduction results were compared using a score. Chemical disinfection and also accelerated ageing affected the dimensional stability of the facial silicone with statistically significant results. The silicone's detail reproduction was not affected by these two factors regardless of nanoparticle type, disinfection and accelerated ageing. © 2012 Informa UK, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is considerable interest in incorporating stabilized vitamins into biopolymeric nanoparticles, especially in the development of carriers and active systems for pharmaceutical and food applications. Amongst biopolymer, chitosan is highly desirable owing to its good biocompatibility, biodegradability and ability to be chemically modified. In this paper, nanoparticles from three kinds of water-soluble derivative chitosan (N,N,N-trimethyl chitosan, TMC) have successfully been synthesized by ionic gelation with tripolyphosphate (TPP) anions. Combinations of concentrations of TMC and TPP have resulted in nanoparticles with varying sizes for which the capability for loading with vitamins was investigated. Zeta potential measurement and particle size analysis demonstrated that the size of the nanoparticles wasoptimized (196±8nm) when the lowest TMC and TPP amounts were used, i.e., 0.86mgmL -1 and 0.114mgmL -1 respectively. As the TMC and/or the TPP concentrations increase, the resulting size of the nanoparticles increases considerably. Three different vitamins (B9, B12 and C) were tested as additives and the final system characterized in relation to size, morphology, spectroscopic and zeta potential properties. In general, the incorporation of vitamins increased all the TMC-TPP original nanoparticle sizes, reaching a maximum diameter of 534±20nm when loaded with vitamin C. The presence of vitamins also decreases the zeta potential, with one exception observed when using vitamin C. The preliminary results of this study suggested that all TMC/TPP nanoparticles can be successfully used as a stable medium to incorporate and transport vitamins, with potential applications in foodstuffs. © 2011 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper Pentacyanonitrosylferrate (NCuNP) nanoparticles were prepared in formamide solvent. The material was characterized by Infrared (FTIR), X-Ray Diffraction (XRD) and Ultraviolet-Visible (UV-Vis) Spectroscopy. The Cyclic Voltammogram (CV) the modified graphite paste electrode with NCuNP exhibits two redox couples with (Eθ,)1 = 0.29 and (E θ,)2 = 0.86 V attribute at Cu(I)/Cu (II) and Fe(II)(CN)5NO/Fe(III)(CN) 5NO processes, respectively (KCl = 1.0 mol L-1; v = 20 mV s-1). The redox couple with (Eθ,)2 presents an electrocatalytic response for sulfite. The modified graphite paste electrode gives a linear response of 7.0 × 10-4 to 3.0 × 10-2 mol L-1 (r = 0.998), for sulfite determination with Detection Limit (DL) of 1.76 × 10-3 mol L-1 and an amperometric sensitivity of 3.38 mA/mol L-1 and relative standard desviations ± 3% (n=3). ©The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes research on a simple low-temperature synthesis route to prepare bismuth ferrite nanopowders by the polymeric precursor method using bismuth and iron nitrates. BiFeO 3 (BFO) nanopowders were characterized by means of X-ray diffraction analyses, (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy (Raman), thermogravimnetric analyses (TG-DTA), ultra-violet/vis (UV/Vis) and field emission scanning electron microscopy (FE-SEM). XRD patterns confirmed that a pure perovskite BiFeO 3 structure with a rhombohedral distorted perovskite structure was obtained by heating at 850 °C for 4 hours. Typical FT-IR spectra for BFO powders revealed the formation of a perovskite structure at high temperatures due to a metal-oxygen bond while Raman modes indicated oxygen octahedral tilts induced by structural distortion. A homogeneous size distribution of BFO powders obtained at 850 °C for 4 hours was verified by FE-SEM analyses. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to compare biofi lm formation by Candida glabrata and Candida albicans on acrylic, either individually or when combined (single and dual species) and then examine the antimicrobial effects of silver nanoparticles and nystatin on these biofi lms. Candidal adhesion and biofi lm assays were performed on acrylic surface in the presence of artifi cial saliva (AS) for 2 h and 48 h, respectively. Candida glabrata and C. albicans adherence was determined by the number of colony forming units (CFUs) recovered from the biofi lms on CHROMagar ® Candida . In addition, crystal violet (CV) staining was used as an indicator of biofi lm biomass and to quantify biofi lm formation ability. Pre-formed biofi lms were treated either with silver nanoparticles or nystatin and the effect of these agents on the biofi lms was evaluated after 24 h. Results showed that both species adhered to and formed biofi lms on acrylic surfaces. A signifi cantly ( P < 0.05) higher number of CFUs was evident in C. glabrata biofi lms compared with those formed by C. albicans . Comparing single and dual species biofi lms, equivalent CFU numbers were evident for the individual species. Both silver nanoparticles and nystatin reduced biofi lm biomass and the CFUs of single and dual species biofi lms ( P < 0.05). Silver nanoparticles had a signifi cantly ( P < 0.05) greater effect on reducing C. glabrata biofi lm biomass compared with C. albicans . Similarly, nystatin was more effective in reducing the number of CFUs of dual species biofi lms compared with those of single species ( P < 0.05). In summary, C. glabrata and C. albicans can co-exist in biofi lms without apparent antagonism, and both silver nanoparticles and nystatin exhibit inhibitory effects on biofi lms of these species. © 2013 ISHAM.