159 resultados para 0205 Optical Physics
Resumo:
Photoluminescence and photo-excited conductivity data as well as structural analysis are presented for sol-gel SnO2 thin films doped with rare earth ions Eu3+ and Er3+, deposited by sol-gel-dip-coating technique. Photoluminescence spectra are obtained under excitation with various types of monochromatic light sources, such as Kr+, Ar+ and Nd:YAG lasers, besides a Xe lamp plus a selective monochromator with UV grating. The luminescence fine structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at the asymmetric grain boundary layer sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference in the capture energy is not so evident in these materials with nanoscocopic crystallites, even though the luminescence spectra are rather distinct. It seems that grain boundary scattering plays a major role in Eu-doped SnO2 films. Structural evaluation helps to interpret the electro-optical data. © 2010 IOP Publishing Ltd.
Resumo:
We have established a link between the global ac response and the local flux distribution of superconducting films by combining magnetic ac susceptibility, dc magnetization, and magneto-optical measurements. The investigated samples are three Nb films: a plain specimen, used as a reference sample, and other two films patterned with square arrays of antidots. At low temperatures and small ac amplitudes of the excitation field, the Meissner screening prevents penetration of flux into the sample. Above a certain ac drive threshold, flux avalanches are triggered during the first cycle of the ac excitation. The subsequent periodic removal, inversion, and rise of flux occurs essentially through the already-created dendrites, giving rise to an ac susceptibility signal weakly dependent on the applied field. The intradendrite flux oscillation is followed, at higher values of the excitation field, by a more drastic process consisting of creation of new dendrites and antidendrites. In this more invasive regime, the ac susceptibility shows a clear field dependence. At higher temperatures a smooth penetration occurs, and the flux profile is characteristic of a critical state. We have also shown that the regime dominated by vortex avalanches can be reliably identified by ac susceptibility measurements. © 2011 American Physical Society.
Resumo:
The nonlinear (NL) optical properties of glassy xBi2O 3-(1-x) GeO2 with x = 0.72 and 0.82 were investigated. The experiments were performed with lasers at 800 nm (pulses of 150 fs) and 532 nm (pulses of 80 ps and 250 ns). Using the Kerr gate technique, we observed that the NL response of the samples at 800 nm is faster than 150 fs. NL refraction indices, | n 2 | ≈ 5 × 10-16 cm2/W, and two-photon absorption coefficients, α 2, smaller than 0.03 cm/GW, were measured at 800 nm. At 532 nm, we measured the NL transmittance of the samples. From the results obtained, we determined α 2 ≈1 cm/GW and excited-state absorption cross-sections of ≈10-22 cm2 due to free-carriers. © 2013 AIP Publishing LLC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Flash-evaporated GaSb films are analysed using a combination of optical, surface and x-ray diffraction techniques. The effects of thermal annealings on nearly stoichiometric GaSb films are studied.