246 resultados para thin film thickness


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work evaluates fluorinated thin films and their composites for sensor development. Composites were produced using 5 µm starch particles and plasma films obtained from organic fluorinated and silicon compounds reactants. Silicon wafers and aluminum trenches were used as substrates. Film thickness, refractive index and chemical structure were also determined. Scanning electron microscopy shows conformal deposition on aluminum trenches. Films deposited on silicon were exposed to vapor of volatile organic compounds and CV curves were obtained. A qualitative model (FemLab 3.2® program) was proposed for the electronic behavior. These environmentally correct films can be used in electronic devices and preferentially reacted to polar compounds. Nonetheless, due to the difficulty in signal recovery, these films are more effective in one-way sensors, in sub-ppm range.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer light-emitting devices (PLEDs) with poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer were studied with an electron injection layer of ionomers consisting of copolymers of styrene and methylmethacrylate (PS/PMMA) with 3, 6 and 8 mol% degree of sulfonation. The ionomers were able to form very thin films over the emissive layer, with less than 30 nm. Additionally, the presence of ion pairs of ionomer suppresses the tendency toward dewetting of the thin film of ionomer (similar to 10 nm) which can cause malfunction of the device. The effect of the ionomers was investigated as a function of the ion content. The devices performance, characterized by their current density and luminance intensity versus voltage, showed a remarkable increase with the ionomer layer up to 6 mol% of ionic groups, decreasing after that for the 8 mol% ionomer device. The study of the impedance spectroscopy in the frequency range from 0.1 to 10(6) Hz showed that the injection phenomena dominate over the transport in the electroluminescent polymer bulk. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The applicability of plasma shock wave for material processing was investigated using modified inverse Z-pinch device. Shock wave expanding speed and plasma spectral analysis were studied using an internal magnetic,probe and spatially collimated light spectroscopy. The material processing capability of the device was shown by many different surface analysis techniques such as AES, IRS, EPM and SEM. The interactions between a plasma shock wave of similar to4x10(6) cm/s speed with a Si substrate surface shows some ion implantation capability using a nitrogen plasma and thin film formation using a methane plasma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium and their alloys have been used for biomedical applications due their excellent mechanical properties, corrosion resistance and biocompatibility. However, they are considered bioinerts materials because when they are inserted into the human body they are cannot form a chemical bond with bone. In several studies, the authors have attempted to modify their characteristic with treatments that changes the material surface. The purpose of this work was to evaluate obtaining of nanoapatite after growing of the nanotubes in surface of Ti-7.5Mo alloy. Alloy was obtained from c.p. titanium and molibdenium by using an arc-melting furnace. Ingots were submitted to heat treatment and they were cold worked by swaging. Nanotubes were processed using anodic oxidation of alloy in electrolyte solution. Surfaces were investigated using scanning electron microscope (SEM), FEG-SEM and thin-film x-ray diffraction. The results indicate that nanoapatite coating could form on surface of Ti-7.5Mo experimental alloy after nanotubes growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vegetable-based polyurethane (PU) was prepared in the thin film form by spin coating. This polymer is synthesised from castor oil, which can be extracted from the seeds of a native plant in Brazil called mamona. This polymer is biocompatible and is being used as material for artificial bone. The PU was characterised by dielectric spectroscopy in a wide range of frequency (10(-5) Hz to 10(5) Hz) and by thermally stimulated discharge current (TSDC) measurements. The glass transition temperature (T-g=39degreesC) was determined and using the initial rise method the activation energy was found to be 1.58 eV. (C) 2003 Kluwer Academic Publishers.