215 resultados para nitrogen leaching
Resumo:
Coffea canephora plants (clone INCAPER-99) were submitted to low N (LN) or high N (HN) applications and two watering regimes (daily irrigation and irrigation every 5 days for a month). Although water potential was not altered significantly by N, HN plants showed higher relative water content than did LN plants under water deficit. Only HN plants exhibited some ability for osmotic adjustment. Plants from both N treatments increased their cell wall rigidity under drought, with a more pronounced augmentation in HN plants. In well-watered plants, carbon assimilation rate increased with increasing N while stomatal conductance did not respond to N supply. Under drought conditions, carbon assimilation decreased by 68-80% compared to well-watered plants, whereas stomatal conductance and transpiration rate declined by 35% irrespective of the N applications. Stable carbon isotope analysis, combined with leaf gas exchange measurements, indicated that regardless of the watering treatments, N increased the long-term water use efficiency through changes in carbon assimilation with little or no effect on stomatal behaviour.
Resumo:
The effects of metal bioleaching on nutrient solubilization, especially nitrogen and phosphorous, from anaerobically-digested sewage sludge were investigated in this work. The assessment of the sanitary quality of the anaerobic sludge after bioleaching was also carried out by enumerating indicator (total coliforms, fecal coliforms, and fecal streptococci) and total heterotrophic bacteria. The experiments of bioleaching were performed using indigenous sulphur-oxidizing bacteria (Thiobacillus spp.) as inoculum and samples of anaerobically-digested sludge. Nitrogen and phosphorous solubilization from sewage sludge was assessed by measuring, respectively, the concentration of Total Kjeldahl Nitrogen, ammonia, nitrate/nitrite, and soluble and total phosphorous before and after the bioleaching assays. At the end of the experiment, after 4 days of incubation (final pH of 1.4), the following metal solubilization yields were obtained: zinc, 91%; nickel, 87%; copper, 79%; lead, 52%; and chromium, 42%. As a result of sludge acidification, the viable counts of selected indicator bacteria were decreased to below the detection limit (4 × 103 cfu 100 ml-1), followed by an increase in the mineral fraction of nitrogen (from 6 to 10%) and in the soluble fraction of phosphorous (from 15 to 30%). Although some loss of sludge nutrients can occur during solid-liquid separation following bioleaching, its beneficial effects as metal removal and reduction of pathogenic bacteria are sufficient to consider the potential of this treatment before sludge disposal onto agricultural fields.
Resumo:
A comparative study using small-angle x-ray scattering (SAXS) and nitrogen adsorption has been carried out in the structural characterization of silica xerogels and aerogels, obtained from tetraethoxysilane sonohydrolysis. The specific surface and the mean pore size as measured by both the techniques were found to be in notable agreement in all cases for aerogels and xerogels. According to the SAXS data, aerogels at 500 °C exhibit a mass fractal structure with fractal dimension D∼2.4 in the range between the correlation length ξ∼5.3 nm and a∼0.75 nm. An experimental method to probe the mass fractal structure of aerogels from exclusively nitrogen adsorption isotherms has been presented. For aerogels at 500 °C, we have found D∼2.4 in the range between the pore width 2rξ∼33 nm and 2ra∼4.5 nm, which is in notable agreement with the SAXS results (D ∼2.4, ξ∼5.3 nm, a∼0.75 nm) if we assign the pore width 2r probed by the Kelvin equation in the adsorption method to the Bragg distance 2π/q associated to the correlation length 1/q probed by SAXS.
Resumo:
Nitrogen ions were implanted by plasma immersion in Kapton, Mylar and polypropylene, with the objective of forming a diamond-like carbon layer on these polymers. The Raman spectrum of the implanted polypropylene showed typical Diamond-Like Carbon (DLC) graphite (G) and disorder (D) peaks, with an sp 3/sp2 hybridization ratio of approximately 0.4 to 0.6. The XPS analysis of the three implanted polymers also showed peaks of C-C and N-C bonds in the sp3 configuration, with hybridization ratios in the same range as the Raman result. The implanted polymers were exposed to oxygen plasma to test the resistance of the polymers to oxygen degradation. Mass loss rate results, however, showed that the DLC layer formed is not sufficiently robust for this application. Nevertheless, the layer formed can be suitable for other applications such as in gas barriers in beverage containers. Further study of implantation conditions may improve the quality of the DLC layer.
Resumo:
The objective of the present research was to evaluate effects of different strip weed control associated with nitrogen fertilizer on corn applied after planting. The experiment was set and conducted in Botucatu, São Paulo State, Brazil, and the hybrid planted was Dekalb 333-B. A completely randomized block design with four replications was used. Experimental plots were disposed as a factorial scheme 2 x 2 x 4, constituted by two types of weeding on row (with or without manual hoeing), two types of weeding on inter-row (with or without manual hoeing), and four nitrogen levels applied after planting (00, 60, 90, and 120 kg ha-1). Plots were composed by six rows with 5 m length. Nitrogen fertilizer was applied at 35 days after emergence (d.a.e). For weed community it was evaluated: weed density, dominancy, frequency, and relative importance. The main weed species were: Brachiaria plantiginea, Amaranthus retroflexus, Bidens pilosa, Cyperus rotunds, Brachiaria decumbens, Euphorbia heterofila, Oxalis latifolia, Acanthospermum hispidum, Commelina benghalensis. It was evaluated corn height at 40 and 100 d.a.e., first ear insertion height at 100 d.a.e., and final grain yield at harvesting. Plants and first ear insertion height were affected when nitrogen fertilizer was not applied. Treatments without weed control showed that weed interfered negatively with plants height. There were no correlation between weeds and nitrogen fertilizer for all parameters evaluated. Parcels without weed showed the highest ear weights and final grain production. Treatments that received nitrogen fertilizer, independently of studied arrangement, provided higher yields.
Resumo:
A laboratory experiment was carried out aiming to study the effects of an alkyl polyglycoside adjuvant (APG) on deposition and leaching of the herbicide tebuthiuron applied on sugar cane straw. Tebuthiuron, at concentration of 1200 mg L-1, was applied separately and in tank mix with the APG adjuvant, at concentrations of 0.07 and 0.09% (wt v-1), using a spraying volume of 204 L ha-1. A precipitation equivalent to 20 mm of rain was simulated, 24 h after the applications, to evaluate the herbicide leaching. The quantification of tebuthiuron was carried out by the high performance liquid chromatography (HPLC). It was observed that the addition of APG adjuvant at 0.07% (wt v-1) provided an increase of 11.5% in the deposition of tebuthiuron on straw, reduction of 50.4% in the drift of the herbicide and it did not affect significantly the leached amount (68.5%), when compared with the treatment where tebuthiuron was applied alone (70.8%). At the concentration of 0.09% (wt v-1), the APG adjuvant caused an increase of 22.7% in the deposition; it reduced the drift of the herbicide by 99.9% and reduced the leached amount by 7.6% thereby increasing the retention of the herbicide by straw.
Resumo:
Background: Lung deposition of intravenous cephalosporins is low. The lung deposition of equivalent doses of ceftazidime administered either intravenously or by ultrasonic nebulization using either nitrogen-oxygen or helium-oxygen as the carrying gas of the aerosol was compared in ventilated piglets with and without experimental bronchopneumonia. Methods: Five piglets with noninfected lungs and 5 piglets with Pseudomonas aeruginosa experimental bronchopneumonia received 33 mg/kg ceftazidime intravenously. Ten piglets with noninfected lungs and 10 others with experimental P. aeruginosa bronchopneumonia received 50 mg/kg ceftazidime by ultrasonic nebulization. In each group, the ventilator was operated in half of the animals with a 65%/35% helium-oxygen or nitrogen-oxygen mixture. Animals were killed, and multiple lung specimens were sampled for measuring ceftazidime lung tissue concentrations by high-performance liquid chromatography. Results: As compared with intravenous administration, nebulization of ceftazidime significantly increased lung tissue concentrations (17 ± 13 vs. 383 ± 84 μg/g in noninfected piglets and 10 ± 3 vs. 129 ± 108 μg/g in piglets with experimental bronchopneumonia; P < 0.001). The use of a 65%/35% helium-oxygen mixture induced a 33% additional increase in lung tissue concentrations in noninfected piglets (576 ± 141 μg/g; P < 0.001) and no significant change in infected piglets (111 ± 104 μg/g). Conclusion: Nebulization of ceftazidime induced a 5- to 30-fold increase in lung tissue concentrations as compared with intravenous administration. Using a helium-oxygen mixture as the carrying gas of the aerosol induced a substantial additional increase in lung deposition in noninfected piglets but not in piglets with experimental bronchopneumonia. © 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.
Resumo:
Pearl millet (Penisetum glaucum) is an interesting species to be used as cover crop in tropical areas, showing a high ability in potassium uptake. Potassium (K) is not linked to organic compounds in the plant, and can easily be released from decaying straw becoming available for subsequent crops. This experiment evaluated K leaching from millet straw grown under potassium rates (0, 100, 200, and 300 mg dm-3), and submitted to five levels of simulated rain (5, 10, 20, 40, and 80 mm). Plants were grown in soil filled pots in a greenhouse. On the 50th day after emergence, the plants were desiccated with glyphosate. Artificial rain was applied over the straw. Potassium deficiency speeds up millet dehydration after herbicide application and increases lightly rain water retention in the straw. The amount of K leached right after plant desiccation is correlated with the residue nutrient content and can be as high as 64 kg ha-1 considering a mulch of 8 t ha -1. Although well-nourished millet plants release considerable amounts of K with the first rains, a large percentage of the nutrient is still retained in the straw. Copyright © Taylor & Francis, Inc.
Resumo:
The objective of this study was to evaluate the shelf-life of peeled giant river prawn Macrobrachium rosenbergii stored directly in contact with ice (DCI), and without direct contact with ice (WCI). The prawns from DCI treatment showed an intense leaching of non-protein nitrogen (NPN) and total volatile bases nitrogen (TVB-N), thus suggesting that NPN or TVB-N should not be used as freshness indicators of peeled tails stored directly in contact with ice. Loss of flavor and a quick texture tactile decrease with time occurred in both treatments. The shelf-life of peeled tails prepared from M. rosenbergii was 7 days for DCI and 10 days WCI. © 2006 by The Haworth Press, Inc. All rights reserved.
Resumo:
Applying lime on the soil surface in soils managed under no-tillage has caused an excess of basic cations in the most superficial layers of the soil profile. On the other hand, subsoil acidity is considered a constraint to the development of deep plant roots. The objective of this study was to evaluate Ca 2+, Mg 2+, NO 3- and SO 4 2- leaching in the soil profile as affected by liming and top dressing nitrogen fertilization in cotton, grown with straw cover on the soil surface. Cotton plants (Gossypium hirsutum) were grown for 60 days in PVC columns filled with a Distroferric Red Latosol (sand loam Rhodic Oxisol) with liming applied over the straw on the soil surface, incorporated liming 0-20 cm deep, or without liming. Nitrogen was applied at rates of 0, 50, 100 and 150 kg ha -1 as ammonium sulfate. The PVC columns were set up in layers of 0-5, 5-10, 10-20, 20-30 and 30-30 cm, totaling 15.71 dm 3. The ammonium sulfate application caused intense leaching of SO 4 2- in the soil, irrespective of the lime application method. Liming increased the concentration of NO 3 in the 0-20 cm soil layer, whereas the correction of the soil acidity did not affect the NO 3- concentration in the 30-50 cm soil layer. The influence of ammonium sulfate on Ca 2+ leaching below 20 cm was only observed in the soil with incorporated lime. Nitrogen application resulted in extensive Mg 2+ leaching from the soil, regardless of the lime application method. In the soil layer below 30 cm, SO 4 2- presented a higher correlation than NO 3- in the formation of ionic pairs with Ca 2+ and Mg 2+.
Resumo:
Ti-6Al-4V samples have been treated by PHI processing at different temperatures (400-800°C), treatment time (30-150 min) and plasma potential (100 and 420 V). Hardness measurements results showed an enhancement of the hardness for all implanted samples. XRD results detected the Ti 2N phase and the best corrosion resistance was found for the samples processed at higher temperature and lower PIII time.
Resumo:
This study aimed to establish the adequate concentrations of nitrapyrin for the effective inhibition of oxygen demand required for the oxidation of nitrogen compounds during aerobic mineralization of leachate. The aquatic macrophyte Myriophyllum aquaticum was used as a source of dissolved organic matter (DOM). The leachate was incubated in several chambers, containing different composition and treatments: (i) treatment with leachate (DOM), (ii) treatment with DOM plus nitrapyrin in different concentrations (10; 25 and 50 mg L-1), aiming at finding the right concentration that inhibits the nitrification process, (iii) treatment with DOM plus NH4SO 2, (iv) treatment containing DOM and nitrapyrin plus NH 4SO2, and (v) treatment with DOM plus azide. The dissolved oxygen amount in each incubation treatment was periodically measured. The results indicated that the ratio of 10 mg L-1 of nitrapyrin for each 10 mg C of leachate is efficient in inhibiting the oxidation of nitrogen compounds from aquatic macrophytes.
Resumo:
The dinuclear azido-palladium(II) complex [Pd2(N3)4(PPh3)2(μ-ted)], where PPh3 = triphenylphosphine and ted = triethylenediamine, was synthesized and characterized by single-crystal X-ray diffraction. The title compound was crystallized in a triclinic system, space group P1 with a = 11.5875(2)Å, b = 13.0817(3)Å, c = 15.2618(3)Å, α = 93.306(2)°, β =110.040(1)°, γ = 98.486(1)°, V = 2134.95(8)Å3, Z = 2. Each Pd(II) center displays a distorted squareplanar coordination environment formed by two N atoms from two trans terminally coordinated azido groups, one P atom from the phosphine and one N atom from the bridging ted ligand. 2008 © The Japan Society for Analytical Chemistry.
Resumo:
Although the management of the coffee crop is well established in Brazil, there is still room for its improvement in relation natural resources available in each region, aiming the increase in productivity. Here are presented results regarding the fate of the fertilizer nitrogen (N) applied to a coffee plantation related to the prevailing soil water conditions. Soil water balances are discussed, which allowed evaluation of the root distribution, determinations of the crop coefficient and of the soil water conditions during the development of the crop. Approximately, 60% of the root system was distributed in the 0-0.3 m soil layer and the average crop coefficient was 1.1 for 3 to 5 year old plants. Using an N label, the 15N, it was possible to study the distribution of N in the plant and in the soil and establishes general N balances, which also include losses like leaching and volatilization. After two years of ammonium sulfate application, at rates of 280 (1st year) and 350 (2nd year) kg.ha-1 of N, in four equal application performed during the period of positive growth rate, the recuperation of fertilizer N were 19.1% by the aerial plant part and 9.4% by the roots, 12.6% remained in the soil and 11.2% in the litter; 0.9% was lost by volatilization and 2.3% by leaching; 26.3% was exported through harvesting and 18.2% remained in non evaluated compartments. From the applied 630 kg.ha -1 of N during the two years, 180 kg.ha -1 of N were found in the plant (shoot and root), which corresponds to 28.6%; 150 kg.ha -1 of N remained available for the next years(soil and litter), and only 20 kg.ha -1 of N were effectively lost (volatilization and leaching).
Leaching of Ni and Cu from mine wastes (tailings and slags) using acid solutions and A. ferrooxidans
Resumo:
The objective of this work is to evaluate the acidic and biological leaching of tailings containing Ni/Cu from a flotation and smelting plant. Acidithiobacillus ferrooxidans, strain LR, was used for bioleaching at pH 1.8 and chemical controls were run parallel to that. The acidic leaching was done within 48 hours at pH 0.5 and 1.0. In the slag inoculated flasks the redox potential was high (600 mV), thus indicating oxidative bacterial activity, however, the obtained results after 15 days showed only around 13% Ni and 8% Cu extractions, which were not different to those of the controls. For the flotation tailings bioleaching extractions were approximately 45% for Ni and 16% for Cu while differing figures were obtained for the chemical controls. These were 30% and 12% respectively. Here we could observe that the presence of bacterial activity led to a higher solubility of Ni. Acid leaching of slag showed higher nickel and copper extractions: 56% and 24% respectively at pH 0.5 and 21% and 11% at pH 1.0. However, the acid consumption was 320 and 150 Kg/ton of slag, respectively, both much higher than in bacterial assays. These results indicated that Ni and Cu solubilization from the slag is acid dependent no matter the redox potential or ferric iron concentration of the leaching solution. For flotation tailings, acid treatment showed extractions of 23% for Ni and 16% for copper at pH 0.5 and 22% and 28%, respectively at pH 1.0. The acid consumption was also higher: 220 and 120 Kg/ton, at pH 0.5 and 1.0, respectively. Based on own findings we could observe that acid leaching is found to be more effective for slag, though the acid consumption is much higher, while for the flotation tailings, bacterial leaching seems to be the best alternative. © (2009) Trans Tech Publications.