173 resultados para modelo matemático
Resumo:
The aims of this work are to analyze the direct solar radiation pressure torque (TPRS) in the rotational motion of spin-stabilized artificial satellites, to numerically implement these solutions and to compare the results with real data of the Brazilian Satellite Data Collection – SCD1 and SCD2, supplied by INPE. The mathematical model for this torque is determined for a cylindrical satellite, and the components of this torque are determined in a fixed system in the satellite. An analytical solution for the spin motion equations is proposed, in which TPRSD does not affect the spin velocity of the satellite. Two approaches are adopted in the numerical implementation of the developed theory: the first one considers the proposed theory and the second introduces a variation in the spin velocity based on its real variation. The results obtained indicate that the solar radiation pressure torque has little influence in the right ascension and declination axis of rotation due to the small dimension of the satellite and altitude in which it is found. To better validate the application of the presented theory, the angular deviation of the spin axis and solar aspect angle were also analyzed. The comparison of the results of the approaches conducted with real data show good precision in the theory, which can be applied in the prediction of the rotational motion of the spin-stabilized artificial satellites, when others external torques are considered besides the direct solar radiation pressure torque
Resumo:
Cancer biology is a complex and expanding field of science study. Due its complexity, there is a strong motivation to integrate many fields of knowledge to study cancer biology, and biological stoichiometry can make this. Biological stoichiometry is the study of the balance of multiple chemical elements in biological systems. A key idea in biological stoichiometry is the growth rate hypothesis, which states that variation in the carbon:nitrogen:phosphorus stoichiometry of living things is associated with growth rate because of the elevated demands for phosphorusrich ribosomal RNA and other elements necessary to protein synthesis. As tumor cells has high rate proliferation, the growth rate hypothesis can be used in cancer study. In this work the dynamic of two tumors (primary and secondary) and the chemical elements carbon and nitrogen are simulate and analyzed through mathematical models that utilize as central idea biological stoichiometry. Differential equations from mathematical model are solved by numerical method Runge-Kutta fourth order
Resumo:
The Urucuia Aquifer System represents a strategic water source in western Bahia. Its baseflow is responsible for the flow rate of the main tributaries of São Francisco river left bank in the dry season, including the Rio Grande, its main tributary in Bahia state. This river has a hydrological regime heavily affected by groundwater and is located in a region with conflicts about water resources. The aquifers geology is constituted by neocretacious sandstones of Urucuia Group subdivided in Posse Formation and Serra das Araras Formation. The embasement is formed by neoproterozoic rocks of Bambuí Group. This work focuses on an important tool application, the mathematical model, whose function is represent approximately and suitably the reality so that can assist in different scenarios simulations and make predictions. Many studies developed in this basin provided the conceptual model basis including a full free aquifer, lithological and hydraulical homogeneity in entire basin, null flux at plateau borders and aquifer base. The finite element method is the numerical method used and FEFLOW the computational algorithm. The simulated area was discretized in a single layer with 27.357,6 km² (314.432 elements and 320.452 nodes) totaling a 4.249,89 km³ volume. Were utilized 21 observation wells from CERB to calibrate the model. The terrain topography was obtained by SRTM data and the impermeable base was generated by interpolation of descriptive profiles from wells and electric vertical drilling from previous studies. Works in this area obtained mean recharge rates varying approximately from 20% to 25% of average precipitation, thus the values of model recharge zones varying in this range. Were distributed 4 hydraulic conductivity zones: (K1) west zone with K=6x10-5 m/s; (K2) center-east zone with K=3x10-4 m/s; (K3) far east zone with K=5x10-4 m/s; e (K4) east-north zone with K=1x10-5 m/s. Thereby was incorporated to the final conceptual model...
Resumo:
In this paper, a computational analysis, using a cellular automata model, has been developed to analyze post-feeding dispersal behavior of blow y larvae. This model aimed to: simulate the exponential decline of pupal number in relation to the feed source and spatial oscillation due to larval interaction during dispersal; study whether the prior pupal presence in uences distribution patterns of larval frequency; and compare obtained unidirectional dispersal patterns to the cross-dimensional ones. The cellular automata (CA) model was able to successfully reproduce the essential features of the larval dispersal process and, thus, show the importance of local interaction in the studied dispersal process dynamics. Oscillations could be explained by the interaction among dispersing larvae and intrinsic pupation time. The box size and the initial larval density were important factors for the experiment because they in uenced the results. Results showed that the unidirectional dispersal could be used to simulate the larval dispersion that occurs in the natural environment, because both models had a similar result. These results are important to understand how di erent factors can in uence the dynamics of blow y larval dispersal, bringing important results for behavioral ecology and forensic entomology
Resumo:
Classical statistical techniques which necessarily assume that all sampling units are random and independent were always used in the timber industry. Geostatistics considers that certain phenomena are characterized by spatial dependence: values of sampling units closer to each other tend to be more similar than values of sampling units farther away. This study aimed to characterize the spatial variability of the finishing (dyer) in the upper and lower surfaces of four edge glued panels by using geostatistical methods using geoR. Semivariograms were constructed for the analysis of spatial dependence. The spherical mathematical model was the best fit to the semivariograms generated, and was done the interpolation of the data (kriging) in samples where the distribution of dyer presents spatial dependence. In the bottom surfaces of two panels where the spatial dependence was detected geostatistical methods characterized a very large spatial variability due to the heterogeneous application of the finishing
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper a mathematical model that combines lot-sizing and cutting-stock problems applied to the furniture industry is presented. The model considers the usual decisions of the lot sizing problems, as well as operational decisions related to the cutting machine programming. Two sets of a priori generated cutting patterns are used, industry cutting patterns and a class of n-group cutting patterns. A strategy to improve the utilization of the cutting machine is also tested. An optimization package was used to solve the model and the computational results, using real data from a furniture factory, show that a small subset of n-group cutting patterns provides good results and that the cutting machine utilization can be improved by the proposed strategy.
Resumo:
The present work refers to the design, conception and development of a quadcopter based on PID controllers, a widespread microcontroller on the market was being implemented, the Arduino. Also made use of LabVIEW programming tool from National Instruments company for the quadcopter control and telemetry. For the control, LabVIEW software acquired the joystick commands, making the necessary adjustments to the perfect interpretation by microcontroller on the quadcopter and adjusts the parameters of PID controllers. For telemetry, data relating to quadcopter behavior are received, interpreted and presented in an intuitive user interface. In the first part of this graduate work presents the theoretical background on the subject, with a brief history about the quadcopters, followed by the main projects in the academic and commercial matters. Also are presented the theories of communications used in the design and PID control. Then an overview of the dynamic and mathematical model is demonstrated. Having done this, the physical and computer components required to complete the project are showed and the results are achieved consequently. Finally, a conclusion is made taking into account the results obtained. In this work will be presented the PID control of quadcopter translational movements only to roll and pitch movements
Resumo:
The present work develops a fuzzy inference system to control the rotation speed of a DC motor available in Degem Kit. Therefore, it should use the fuzzy toolbox of Matlab in conjunction with the data acquisition board NI - USB - 6009, a National Instrument’s board. An introduction to fuzzy logic, the mathematical model of a DC motor and the operation of data acquisition board is presented first. Followed by the controller fuzzy model implemented using Simulink which is described in detail. Finally, the prototype is shown and the simulator results are presented
Resumo:
Because the high consumption of welded pipe for exploration and conduction oil and gas, optimization of manufacturing processes is necessary to obtain better productivity, efficiency and cost reduction. The objective of this study is to analyze the forms of heat transfer during the welding of pipes using longitudinal submerged arc process them to propose a model for the temperature distribution in the welded region. For this analysis are addressed as the heat transfer modes operate in the specified welding process and the necessary considerations for the mathematical model were obtained. The calculations were performed and the simulations needed to obtain the temperature distribution in the tube were carried out. Therefore, the practice was satisfactory and the results showed a range of temperatures along the pipe for a particular model and the future suggestions for improvement of this work
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS