195 resultados para larval dispersal
Resumo:
Toxic baits are the most used control method for leaf-cutting ants due to their high effectiveness and because they are considered the safest for humans. Taking into account that the importance of leaf-cutting ants as pests, knowing the process by which dispersal and worker contamination is achieved becomes essential to understand several aspects about the functioning of a bait-borne AI (active ingredient) used in toxic baits. It has been established that an effective toxic bait should have a delayed- action AI, but its dispersion among the different sizes of workers is unknown. Workers of different sizes are involved in quite different tasks such foraging, cultivation of symbiotic macrofungus or control of deleterious microfungi. Therefore, we prepared a toxic bait containing the delayed-action AI sulfluramid and a dye (Rhodamine B) as an AI tracer in order to study dispersal and contamination in colonies, evaluated at different periods and in relation to different workers' sizes. Both field and laboratory colonies were evaluated. The great level of contamination, about 50% at 24 hours, in all sizes of workers demonstrates that worker contact with toxic bait is intense within this period. The distribution in field and laboratory colonies was similar. This contamination pattern is probably enough to cause the colony to die because of contamination of smaller workers, leading to the loss of control of the aggressive microfungi, which can quickly overgrow the symbiotic fungus culture. The dispersal dynamics of AI in leaf-cutting ant workers is important for investigations on the mode of action of this insecticide in the colony, and as a reference in future studies, such as those attempting to reduce the concentration of AIs in baits to reduce their environmental impact, or for facilitation of new AI screening.
Resumo:
Several beetle luciferases have been cloned and sequenced. However, most studies on structure and function relationships and bioanalytical applications were done with firefly luciferases, which are pH sensitive. Several years ago we cloned Pyrearinus termitilluminans larval click beetle luciferase, which displays the most blue-shifted bioluminescence among beetle luciferases and is pH insensitive. This enzyme was expressed in E. coli, purified, and its properties investigated. This luciferase shows slower luminescence kinetics, KM values comparable to other beetle luciferases and high catalytic constant. Fluorescence studies with 8-anilino-1-naphtalene-sulfonic acid (1,8-ANS) and modeling studies suggest that the luciferin binding site of this luciferase is very hydrophobic, supporting the solvent and orientation polarizability effects as determining mechanisms for bioluminescence colors. Although pH insensitive in the range between pH 6-8, at pH 10 this luciferase displays a remarkable red-shift and broadening of the bioluminescence spectrum. Modeling studies suggest that the residue C312 may play an important role in bioluminescence color modulation. Compared to other beetle luciferases, Pyrearinus termitilluminans luciferase also displays higher thermostability and sustained luminescence in a bacterial cell environment, which makes this luciferase particularly suitable for in vivo cell analysis and bioimaging. © The Royal Society of Chemistry and Owner Societies 2009.
Resumo:
Tropical rain forest conservation requires a good understanding of plant-animal interactions. Seed dispersal provides a means for plant seeds to escape competition and density-dependent seed predators and pathogens and to colonize new habitats. This makes the role and effectiveness of frugivorous species in the seed dispersal process an important topic. Northern pigtailed macaques (Macaca leonina) may be effective seed dispersers because they have a diverse diet and process seeds in several ways (swallowing, spitting out, or dropping them). To investigate the seed dispersal effectiveness of a habituated group of pigtailed macaques in Khao Yai National Park, Thailand, we examined seed dispersal quantity (number of fruit species eaten, proportion in the diet, number of feces containing seeds, and number of seeds processed) and quality (processing methods used, seed viability and germination success, habitat type and distance from parent tree for the deposited seeds, and dispersal patterns) via focal and scan sampling, seed collection, and germination tests. We found thousands of seeds per feces, including seeds up to 58 mm in length and from 88 fruit species. Importantly, the macaques dispersed seeds from primary to secondary forests, via swallowing, spitting, and dropping. Of 21 species, the effect of swallowing and spitting was positive for two species (i. e., processed seeds had a higher % germination and % viability than control seeds), neutral for 13 species (no difference in % germination or viability), and negative (processed seeds had lower % germination and viability) for five species. For the final species, the effect was neutral for spat-out seeds but negative for swallowed seeds. We conclude that macaques are effective seed dispersers in both quantitative and qualitative terms and that they are of potential importance for tropical rain forest regeneration. © 2013 Springer Science+Business Media New York.
Functional Redundancy and Complementarities of Seed Dispersal by the Last Neotropical Megafrugivores
Resumo:
Background: Functional redundancy has been debated largely in ecology and conservation, yet we lack detailed empirical studies on the roles of functionally similar species in ecosystem function. Large bodied frugivores may disperse similar plant species and have strong impact on plant recruitment in tropical forests. The two largest frugivores in the neotropics, tapirs (Tapirus terrestris) and muriquis (Brachyteles arachnoides) are potential candidates for functional redundancy on seed dispersal effectiveness. Here we provide a comparison of the quantitative, qualitative and spatial effects on seed dispersal by these megafrugivores in a continuous Brazilian Atlantic forest. Methodology/Principal Findings: We found a low overlap of plant species dispersed by both muriquis and tapirs. A group of 35 muriquis occupied an area of 850 ha and dispersed 5 times more plant species, and 13 times more seeds than 22 tapirs living in the same area. Muriquis dispersed 2.4 times more seeds in any random position than tapirs. This can be explained mainly because seed deposition by muriquis leaves less empty space than tapirs. However, tapirs are able to disperse larger seeds than muriquis and move them into sites not reached by primates, such as large forest gaps, open areas and fragments nearby. Based on published information we found 302 plant species that are dispersed by at least one of these megafrugivores in the Brazilian Atlantic forest. Conclusions/Significance: Our study showed that both megafrugivores play complementary rather than redundant roles as seed dispersers. Although tapirs disperse fewer seeds and species than muriquis, they disperse larger-seeded species and in places not used by primates. The selective extinction of these megafrugivores will change the spatial seed rain they generate and may have negative effects on the recruitment of several plant species, particularly those with large seeds that have muriquis and tapirs as the last living seed dispersers. © 2013 Bueno et al.
Resumo:
This study focused on representing spatio-temporal patterns of fungal dispersal using cellular automata. Square lattices were used, with each site representing a host for a hypothetical fungus population. Four possible host states were allowed: resistant, permissive, latent or infectious. In this model, the probability of infection for each of the healthy states (permissive or resistant) in a time step was determined as a function of the host's susceptibility, seasonality, and the number of infectious sites and the distance between them. It was also assumed that infected sites become infectious after a pre-specified latency period, and that recovery is not possible. Several scenarios were simulated to understand the contribution of the model's parameters and the spatial structure on the dynamic behaviour of the modelling system. The model showed good capability for representing the spatio-temporal pattern of fungus dispersal over planar surfaces. With a specific problem in mind, the model can be easily modified and used to describe field behaviour, which can contribute to the conservation and development of management strategies for both natural and agricultural systems. © 2012 Elsevier B.V.
Resumo:
Mistletoes represent the best example of specialization in seed dispersal, with a reduced assemblage of dispersal agents. Specific dispersal requirements mediated by the specificity of seed deposition site have apparently led to the evolution of such close relationships between mistletoes and certain frugivores. Here, we provide evidences for another case of specialization involving epiphytic cacti in the genus Rhipsalis, and small Neotropical passerines Euphonia spp., which also act as the main seed dispersers of mistletoes in the family Viscaceae. With field observations, literature search, and observations on captive birds, we demonstrated that Rhipsalis have specific establishment requirements, and euphonias are the most effective dispersers of Rhipsalis seeds in both quantitative and qualitative aspects, potentially depositing seeds onto branches of host plants. We interpret the similar dispersal systems of Rhipsalis and Viscaceae mistletoes, which involve the same dispersal agents, similar fruit morphologies, and fruit chemistry as convergent adaptive strategies that enable seeds of both groups to reach adequate microsites for establishment in host branches. © 2013 by The Association for Tropical Biology and Conservation.
Resumo:
The movement patterns of males, females and juveniles of lekking species often differ due to differences in the commitment to lek activities, which may lead to differences in the spatial distribution and dispersal distances of seeds they eat. By sampling seeds in three lek and non-lek areas of the white-bearded manakin (Manacus manacus), we tested whether this lekking species increased the abundance and species richness of seeds in lek areas and, at a finer scale, in 21 displaying courts within lek areas. Combining data on seed defecation or regurgitation rates by free-ranging individuals, the number of seeds in droppings or regurgitations of mist-netted birds, and the distances travelled by birds equipped with radio-transmitters, we estimated the potential spatial distribution of seeds generated by six resident males and six females or juveniles during the morning peak of lek activity and when lek activity decreased in the afternoon. There was no difference in the species richness (46 and 44 morphospecies, respectively) and abundance of seeds (15.4 ± 7.3 seeds and 14.0 ± 1.1 seeds, respectively) between lek and non-lek areas. Within leks both parameters increased in courts (45 spp., 17.6 ± 14 seeds) compared with non-court sites (22 spp., 1.9 ± 1.8 seeds), likely as a consequence of the longer time spent by resident males in perches in or near display courts. Distances moved by juveniles and females per 60-min period (183 ± 272 m) were greater than resident males (42.6 ± 22.0 m) in the mornings, while the opposite happened in the afternoons (55.2 ± 40.7 m and 157 ± 105 m, respectively). We conclude that the spatial aggregation of seeds in lek areas of M. manacus occurs at the court level, and the spatial distribution of deposited seeds varies with manakin lekking status and the daily period of foraging. © Cambridge University Press 2013.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Aquicultura - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBB