147 resultados para insulin aspart
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Insulin resistance is a common risk factor in chronic kidney disease patients contributing to the high cardiovascular burden, even in the absence of diabetes. Glucose-based peritoneal dialysis (PD) solutions are thought to intensify insulin resistance due to the continuous glucose absorption from the peritoneal cavity. The aim of our study was to analyse the effect of the substitution of glucose for icodextrin on insulin resistance in non-diabetic PD patients in a multicentric randomized clinical trial. This was a multicenter, open-label study with balanced randomization (1:1) and two parallel-groups. Inclusion criteria were non-diabetic adult patients on automated peritoneal dialysis (APD) for at least 3 months on therapy prior to randomization. Patients assigned to the intervention group were treated with 2L of icodextrin 7.5%, and the control group with glucose 2.5% during the long dwell and, at night in the cycler, with a prescription of standard glucose-based PD solution only in both groups. The primary end-point was the change in insulin resistance measured by homeostatic model assessment (HOMA) index at 90 days. Sixty patients were included in the intervention (n = 33) or the control (n = 27) groups. There was no difference between groups at baseline. After adjustment for pre-intervention HOMA index levels, the group treated with icodextrin had the lower post-intervention levels at 90 days in both intention to treat [1.49 (95% CI: 1.23-1.74) versus 1.89 (95% CI: 1.62-2.17)], (F = 4.643, P = 0.03, partial η(2) = 0.078); and the treated analysis [1.47 (95% CI: 1.01-1.84) versus 2.18 (95% CI: 1.81-2.55)], (F = 7.488, P = 0.01, partial η(2) = 0.195). The substitution of glucose for icodextrin for the long dwell improved insulin resistance measured by HOMA index in non-diabetic APD patients.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To maintain euglycemia in healthy organisms, hepatic glucose production is increased during fasting and decreased during the postprandial period. This whole process is supported by insulin levels. These responses are associated with the insulin signaling pathway and the reduction in the activity of key gluconeogenic enzymes, resulting in a decrease of hepatic glucose production. On the other hand, defects in the liver insulin signaling pathway might promote inadequate suppression of gluconeogenesis, leading to hyperglycemia during fasting and after meals. The hepatocyte nuclear factor 4, the transcription cofactor PGC1-α, and the transcription factor Foxo1 have fundamental roles in regulating gluconeogenesis. The loss of insulin action is associated with the production of pro-inflammatory biomolecules in obesity conditions. Among the molecular mechanisms involved, we emphasize in this review the participation of TRB3 protein (a mammalian homolog of Drosophila tribbles), which is able to inhibit Akt activity and, thereby, maintain Foxo1 activity in the nucleus of hepatocytes, inducing hyperglycemia. In contrast, physical exercise has been shown as an important tool to reduce insulin resistance in the liver by reducing the inflammatory process, including the inhibition of TRB3 and, therefore, suppressing gluconeogenesis. The understanding of these new mechanisms by which physical exercise regulates glucose homeostasis has critical importance for the understanding and prevention of diabetes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Twenty six Murrah female river buffaloes, between 45 and 70 d post-partum, empty, multiparae, with an average live weight of 675 ± 56 kg, and average body condition of 3.5 points, in a 1 to 5 scale, were used to determine the concentrations of glucose, cholesterol, total protein and insulin-like growth factor type I(IGF-I) in the follicular fluid. The fluid was collected from dominant follicles, with diameters between 8 and 12 mm, by in vivo follicular aspiration. The oestrous cycle stage was not taken into account. The wave of follicular development was synchronized six days prior to the collection. Biochemical analyses of glucose and cholesterol were performed by the enzymatic colorimetric method with the utilization of commercial kits of Glicose (GOD-PAP) and Cholesterol (CHOD-PAP) (Kovalent), respectively. For the determination of total protein, the commercial kit total Protein (Kovalent), method Biuret, was employed. Readings were carried out through absorption spectrophotometry with visible light. Through the radioimmunoanalysis (RIA) technique the concentration of IGF-I was obtained using commercial kits of IRMA IGF-I (IMMUNOTECH). Descriptive statistics was used, by applying the PROC MEANS procedure of the SAS (2009) statistical package. Glucose concentrations (4.0 ± 0.75 mmol/L) and IGF-I (340 ± 129.83 ng/mL) showed higher values in female river buffaloes and dairy cows regarding those reported in other studies. However, cholesterol levels (0.51 ± 0.12 mmol/L) and total proteins (58.4 ± 4.43 g/L) were lower. Results indicate that there is a relationship between the concentration of biochemical indicators, the nutritional aspects, the diameter of the aspired follicles and the productive period.