162 resultados para hydroxyapatite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Para a recuperação da estética facial,há necessidade de reposição do volume orbitário perdido em decorrência de eviscerações ou enucleações. Este estudo foi realizado com os objetivos de avaliar comparativamente a biocompatibilidade e a manutenção do volume orbitário com o uso de esferas de hidroxiapatita sintética e de polietileno poroso, na reconstrução de cavidades evisceradas de coelhos. Métodos: Para isso foram utilizados 56 coelhos albinos, submetidos à evisceração do olho direito, com colocação de esferas de hidroxiapatita sintética (G1 – 28 animais) ou polietileno poroso (G2 – 28 animais).Quatro coelhos de cada grupo foram sacrificados em 7 momentos experimentais: 7, 15, 30, 60, 90, 120 e 180 dias após a evisceração. Após o sacrifício, o conteúdo da cavidade orbitária direita foi removido e seccionado na porção central em duas hemi-metades,uma das quais foi preparada para exame histopatológico; exame ultra-estrutural em microscópio eletrônico de varredura foi feito em dois animais de 7, 60 e 180 dias, de ambos os grupos experimentais. Resumo 118 Resultados: Observou-se aos 7 dias, tecido conjuntivo frouxo, constituído de células inflamatórias e hemáceas, em meio à rede de fibrina, principalmente na periferia da esfera de hidroxiapatita e chegando até ao centro da esfera de polietileno; a reação tecidual tornou-se mais densa com o passar do tempo. Decorridos 60 dias, observou-se em G1, início de metaplasia óssea que se acentuou ao longo do experimento. Em todos os momentos experimentais, a inflamação,predominantemente macrofágica, foi muito mais acentuada em G1.O volume da cavidade esclero-corneana foi melhor mantido em G2. Conclusão: a esfera de hidroxiapatita sintética provoca mais inflamação que a de polietileno poroso e é menos eficiente na manutenção do volume orbitário... (Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the United States, composites accounted for nearly 70% of the 173.2 million composite and amalgam restorations placed in 2006 (Kingman et al., 2012), and it is likely that the use of composite will continue to increase as dentists phase out dental amalgam. This trend is not, however, without consequences. The failure rate of composite restorations is double that of amalgam (Ferracane, 2013). Composite restorations accumulate more biofilm, experience more secondary decay, and require more frequent replacement. In vivo biodegradation of the adhesive bond at the composite-tooth interface is a major contributor to the cascade of events leading to restoration failure. Binding by proteins, particularly gp340, from the salivary pellicle leads to biofilm attachment, which accelerates degradation of the interfacial bond and demineralization of the tooth by recruiting the pioneer bacterium Streptococcus mutans to the surface. Bacterial production of lactic acid lowers the pH of the oral microenvironment, erodes hydroxyapatite in enamel and dentin, and promotes hydrolysis of the adhesive. Secreted esterases further hydrolyze the adhesive polymer, exposing the soft underlying collagenous dentinal matrix and allowing further infiltration by the pathogenic biofilm. Manifold approaches are being pursued to increase the longevity of composite dental restorations based on the major contributing factors responsible for degradation. The key material and biological components and the interactions involved in the destructive processes, including recent advances in understanding the structural and molecular basis of biofilm recruitment, are described in this review. Innovative strategies to mitigate these pathogenic effects and slow deterioration are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the influence of modifications of the cp-Ti and Ti 6Al 4V alloy, by treating the surface with NaOH and depositing titanium oxide and hydroxyapatite by sol-gel method, on their biocompatibility was studied. The coatings were characterized by scanning electron microscopy and X-ray diffraction which showed that the coatings on Ti 6Al 4V are better than on cp-Ti. Adhesion tests showed that adhesion strength of the coatings on cp-Ti substrate is less than on Ti 6Al 4V as well as cytotoxicity for L929 fibroblast cells is higher

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium and its alloys has been widely used as materials for metallic biomaterials implants are usually employed to restore the hard tissue function, being used for artificial joints and bones, synthetic plates, crowns, dental implants and screws . Objective of this work was the surface modification of Ti-alloy 25Ta from biomimetic surface treatment of employment and deposition of polymer by electrospinning. The league was obtained from the fusion of the pure elements in the arc furnace with controlled atmosphere. The ingots were subjected to heat treatment, cold forged and sectioned discs with 13 mm diameter and 3 mm thick. Two surface treatments was evaluated, biomimetic and electrospinning with PCL fiber. The biomimetic treatment was performed involving alkaline treatment for three molarities 1.5M, 3M and 5M with immersion in SBF. The electrospinning was performed using PCL polymer alloy surface after the alkali treatment Ti25Ta 1M. For this group the polymer coated surfaces were immersed in calcium phosphate containing solution for immobilization of apatite. The results were compared with previous studies using surface treatment group to verify hydroxyapatite formation on the sample surface and it is concluded that the best condition is biomimetic treatment with 5M alkali treatment and heat treatment at 80 ° C for 72 hours

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The radiographic characteristics of a biomaterial, such as its density, may influence the evaluation of the results obtained following its clinical use. Objective: The aim of this study was to evaluate the radiographic density of biomaterials used as bone substitutes, inserted into dental sockets and bone defects in created in the jaws of pigs. The influence of a soft tissue simulator on the results was also evaluated. Material and method: Two and three-millimeter-deep bone defects were created in the pigs mandible and the right first molar extraction socket were used. Commercial samples of five biomaterials were tested: Hydroxyapatite, Lyophilized Bovine Bone, 45S5 bioglass (generic), PerioGlass and β-Tri-Calcium Phosphate, and compared to a positive (mandibular bone) and negative (empty alveolar bone defects) controls. Radiographic images were acquired with and without a 10 mm thick soft-tissue simulator. Result: The results for the extraction sockets showed no differences between the biomaterials and the negative control. For the bone defects, the depth of the defect density influenced the density, both in the negative control (p < 0.01) and biomaterials (p < 0.05) groups. The soft- tissue simulator did not alter the results. Conclusion: The type of the evaluated defect can interfere in the radiographic features presented by each biomaterial, while the simulation of soft tissues was not statistically significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the physicochemical properties and bioactivity of two formulations of calcium silicate-based cements containing additives (CSCM) or resin (CSCR), associated with radiopacifying agents zirconium oxide (ZrO2) and niobium oxide (Nb2O5) as micro- and nanoparticles; calcium tungstate (CaWO4); and bismuth oxide (Bi2O3). MTA Angelus was used as control. Methods. Surface features and bioactivity were evaluated by scanning electron microscopy and the chemical composition by energy dispersive X-ray spectrometry (EDS-X). Results. CSCM and CSCR presented larger particle sizes than MTA. Hydroxyapatite deposits were found on the surface of some materials, especially when associated with the radiopacifier with ZrO2 nanoparticles. All the cements presented calcium, silicon, and aluminum in their composition. Conclusion. Both calcium silicate-based cements presented composition and bioactivity similar to MTA when associated with the radiopacifiers evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To evaluate the anti-erosive potential of solutions containing sodium fluoride (NaF, 225 ppm F) and different film-forming agents.Methods: In Phase 1, hydroxyapatite crystals were pre-treated with solutions containing NaF (F), linear sodium polyphosphate (LPP), sodium pyrophosphate tetrabasic (PP), sodium tripolyphosphate (STP), sodium caseinate (SC), bovine serum albumin (BSA), stannous chloride (Sn) and some combinations thereof. Deionized water was the control (C). The pH-stat method was used to evaluate hydroxyapatite dissolution. In Phase 2, the most effective solutions were tested in two independent experiments. Both consisted of an erosion-remineralization cycling model using enamel and dentine specimens with three solution treatments per day. In Phase 2a, the challenge was performed with 0.3% citric acid (pH = 3.8). In Phase 2b, 1% citric acid (pH = 2.4) was used. Hard tissue surface loss was determined profilometrically. Data were analyzed with two-way ANOVA and Tukey tests.Results: In Phase 1, F, LPP, Sn and some of their combinations caused the greatest reduction in hydroxyapatite dissolution. In Phase 2a, C showed the highest enamel loss, followed by LPP. There were no differences between all other groups. In Phase 2b: (F + LPP + Sn) < (F + LPP) = (F + Sn) < (F) = (LPP + Sn) < (LPP) < (Sn) < C. For dentine, in both experiments, only the fluoride-containing groups showed lower surface loss than C, except for LPP + Sn in 2a.Conclusions: F, Sn, LPP reduced enamel erosion, this effect was enhanced by their combination under highly erosive conditions. For dentine, the F-containing groups showed similar protective effect.Clinical significance: The addition of LPP and/or Sn can improve the fluoride solution protection against erosion of enamel but not of dentine. (C) 2015 Elsevier Ltd. All rights reserved.