260 resultados para WATER INTAKE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present study aimed to verify action of alloxan in metabolic and immune parameters after 24 and 192 hours of the injection in Wistar rats. Thus, eight rats were fasted and received monohidrated alloxan Sigma (32 mg/kg body weight) via endovenous. Glycemia and trglyceridemia analyzes were performed before and 192 hours after alloxan application. After 24 hours, alloxan application increased water intake and decreased body mass, food intake and leucocytes counting. 192 hours after alloxan application, there was a recuperation in food intake and leucocytes counting. on the other hand, in this period there was an increase of glycemia and water intake and reduction of body mass. These results indicate that some of diabetic signs caused by alloxan occur in short-term after drug administration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The drinking behavior responses to centrally administered NG-nitro-L-arginine methyl ester (L-NAME; 10, 20 or 40 µg/µl), an inhibitor of nitric oxide synthase, were studied in satiated rats, with cannulae stereotaxically implanted into the lateral ventricle (LV) and subfornical organ (SFO). Water intake increased in all animals after angiotensin II (ANG II) injection into the LV, with values of 14.2 ± 1.4 ml/h. After injection of L-NAME at doses of 10, 20 or 40 µg/µl into the SFO before injection of ANG II (12 ng/µl) into the LV, water intake decreased progressively and reached basal levels after treatment with 0.15 M NaCl and with the highest dose of L-NAME (i.e., 40 µg). The water intake obtained after 40 µg/µl L-NAME was 0.8 ± 0.01 ml/h. Also, the injection of L-NAME, 10, 20 or 40 µg/µl, into the LV progressively reduced the water intake induced by hypertonic saline, with values of 5.3 ± 0.8, 3.2 ± 0.8 and 0.7 ± 0.01 ml/h, respectively. These results indicate that nitric oxide is involved in the regulation of drinking behavior induced by centrally administered ANG II and cellular dehydration and that the nitric oxide of the SFO plays an important role in this regulation.
Resumo:
We investigated the effects of ramipril, an angiotensin I-converting enzyme (ACE) inhibitor, on water intake by male Holtzman rats (250-300 g) with cannulae implanted into the lateral ventricle. Intracerebroventricular (icv) injection of ramipril (1 mu g/mu l) significantly reduced drinking in response to subcutaneous (sc) injection of isoprenaline (100 mu g/kg) from 8.49 +/- 0.69 to 2.96 +/- 0.36 ml/2 h, polyethyleneglycol (PEG) (30% w/v, 10 ml/kg) from 9.51 +/- 2.20 to 1.6 +/- 0.34 ml/2 h or water deprivation for 24 h from 12.61 +/- 0.83 to 5.10 +/- 1.37 ml/2 h. Ramipril had no effect on water intake induced by cellular dehydration produced by sc injection of hypertonic saline (2 M NaCl). These results are consistent with the hypothesis that ramipril acts as an ACE-blocking agent in the brain. The possibility that ramipril is transformed to ramiprilat, the active drug, by the brain is suggested.
Resumo:
1. The effect of lisinopril, a potent inhibitor of angiotensin converting enzyme (ACE), injected into the medial preoptic area (MPOA) on water intake was investigated in male Holtzman rats (200-250 g).2. Injection of lisinopril (2 mug/mul) into the MPOA abolished the water intake induced by subcutaneous (sc) injection of isoprenaline (100%) and water deprivation (90%) and drastically reduced the water intake induced by sc injection of polyethyleneglycol (60%). A small reduction of water intake induced by lisinopril was also observed 90 and 120 min after sc hypertonic saline (N = 10 for each group).3. These results suggest that central ACE activation, particularly in the MPOA, plays an important role in the dipsogenic responses induced by the agents studied.
Resumo:
Water and 3% NaCl intake were increased by the injection of 4 ng angiotensin II (ANG II) into the anteroventral third ventricle (AV3V) region of rats. Pretreatment with two specific ANG II receptor antagonists, [octanoyl-Leu8]ANG II and [Leu8]ANG II, significantly reduced ANG II-induced water and saline intake. This inhibition lasted approximately 30 min, with partial recovery at 60 min. In rats with electrolytic lesion of the bilateral ventromedial nucleus of hypothalamus (VMH), the effect of ANG II on water intake was not different from that observed in sham rats, but saline ingestion increased. In summary, the present results show that the AV3V region is an important central structure for ANG II-induced saline ingestion. Lesion of the VMH increases the response to ANG II, showing an interaction between the AV3V region and the VMH in the regulation of salt ingestion.
Resumo:
This study investigated the effects of bilateral injections of serotonergic receptor agonist and antagonist into the lateral parabrachial nucleus (LPBN) on the ingestion of water and 0.3 M NaCl induced by intracerebroventricular angiotensin II (ANG II) or by combined subcutaneous injections of the diuretic furosemide (Furo) and the angiotensin-converting enzyme inhibitor captopril (Cap). Rats had stainless steel cannulas implanted bilaterally into the LPBN and into the left lateral ventricle. Bilateral LPBN pretreatment with the serotonergic 5-HT1/5-HT2 receptor antagonist methysergide (4 mu g/200 nl each site) increased 0.3 M NaCl and water intakes induced by intracerebroventricular ANG II (50 ng/mu l) and 0.3 M NaCl intake induced by subcutaneous Furo + Cap. Pretreatment with bilateral LPBN injections of a serotonergic 5-HT2A/2C receptor agonist DOI (5 mu g/200 nl) significantly reduced 0.3 M NaCl intake induced by subcutaneous Furo + Cap. Pretreatment with methysergide or DOI into the LPBN produced no significant changes in the water intake induced by subcutaneous Furo + Cap. These results suggest that serotonergic mechanisms associated with the LPBN may have inhibitory roles in water and sodium ingestion in rats.
Resumo:
Central cholinergic mechanisms are suggested to participate in osmoreceptor-induced water intake. Therefore, central injections of the cholinergic agonist carbachol usually produce water intake (i.e., thirst) and are ineffective in inducing the intake of hypertonic saline solutions (i.e., the operational definition of sodium appetite). Recent studies have indicated that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nucleus (LPBN) markedly increases salt intake in models involving the activation of the renin-angiotensin system or mineralocorticoid hormones. The present studies investigated whether sodium appetite could be induced by central cholinergic activation with carbachol (an experimental condition where only water is typically ingested) after the blockade of LPBN serotonergic mechanisms with methysergide treatment in rats. When administered intracerebroventricularly in combination with injections of vehicle into both LPBN, carbachol (4 nmol) caused water drinking but insignificant intake of hypertonic saline. In contrast, after bilateral LPBN injections of methysergide (4 mug), intracerebroventricular carbachol induced the intake of 0.3 M NaCl. Water intake stimulated by intracerebroventricular carbachol was not changed by LPBN methysergide injections. The results indicate that central cholinergic activation can induce marked intake of hypertonic NaCl if the inhibitory serotonergic mechanisms of the LPBN are attenuated.
Resumo:
This study was performed to investigate the effect of lesion of the anteroventral third ventricle (AV3V) region on the pressor, bradycardic, dipsogenic, natriuretic, kaliuretic, and antidiuretic responses induced by cholinergic activation of the subfornical organ (SFO) in rats. Male Holtzman rats with sham or electrolytic AV3V lesion were implanted with a stainless steel cannula directly into the SFO. Microinjection of the cholinergic agonist carbachol (2 nmol) into the SFO of sham rats induced natriuresis (563 +/- 70 mueq/120 min), kaliuresis (205 +/- 13 mueq/120 min), antidiuresis (10.4 +/- 0.5 ml/120 min), water intake (9.3 +/-1.4 ml/h), bradycardia (-42 +/- 11 beats/min), and increased mean arterial pressure (53 +/- 3 mmHg). In AV3V-lesioned rats (1-5 and 14-18 days), there was a reduction of natriuresis (23 +/-11 and 105 +/- 26 mueq/120 min, respectively), kaliuresis (92 +/- 16 and 100 +/- 17 mueq/120 min), water intake (2.5 +/- 0.9 and 1.8 +/- 1.0 ml/h), and arterial pressure increase (17 +/- 2 and 16 +/- 2 mmHg) induced by carbachol into the SFO. Increased antidiuresis (6.0 +/- 1.0 and 5.2 +/- 0.7 ml/120 min, respectively) and tachycardia (39 +/- 4 and 15 +/- 12 beats/min) instead of bradycardia were also observed in both groups of AV3V-lesioned rats. These results show that cholinergic activation of the rat SFO produces marked natriuresis and kaliuresis in addition to the well-known pressor and dipsogenic responses. They also show that the AV3V region plays an important role in the cardiovascular, fluid, and electrolytic changes induced by cholinergic activation of the SFO in rats.
Resumo:
In the present study we investigated the effect of anteroventral third ventricle (AV3V) lesion on pressor, dipsogenic, natriuretic and kaliuretic responses induced by the injection of carbachol (a cholinergic agonist) into the medial septal area (MSA) of rats. Male rats with sham or AV3V lesion and a stainless-steel cannula implanted into the MSA were used. Carbachol (2 nmol) injected into the MSA in sham lesion rats produced pressor (43 +/- 2 mmHg), dipsogenic (9.6 +/- 1.2 ml/h), natriuretic (531 +/- 82-mu-Eq/120 min) and kaliuretic (164 +/- 14-mu-Eq/120 min) responses. In AV3V-lesioned rats (1-5 days and 14-18 days), the pressor (11 +/- 2 mmHg, respectively), dipsogenic (1.9 +/- 0.7 and 1.4 +/- 0.6 ml/h), natriuretic (21 +/- 5 and 159 +/- 44-mu-Eq/120 min) and kaliuretic (124 +/- 14 and 86 +/- 13-mu-Eq/120 min) responses induced by carbachol injection into the MSA were reduced. These results show that the AV3V region is essential for the pressor, dipsogenic, natriuretic and kaliuretic responses induced by cholinergic activation of the MSA in rats.
Resumo:
Methysergide injected bilaterally into the lateral parabrachial nucleus (LPBN) increases NaCl intake in several models of renin-dependent salt appetite. The present study investigated the role of angiotensin Type 1 (AT(1)) receptors in the subfornical organ (SFO) on this effect. The intake of 0.3 M NaCl and water was induced by combined administration of the diuretic, furosemide (FURO), and the angiotensin-converting enzyme inhibitor, captopril (CAP). Pretreatment of the SFO with an AT, receptor antagonist, losartan (1 mu g/200 nl), reduced water intake but not 0.3 M NaCl intake induced by subcutaneous FURO + CAP. Methysergide (4 mu g/200 nl) injected bilaterally into the LPBN increased 0.3 M NaC1 intake after FURO + CAP. Losartan injected into the SFO prevented the additional 0.3 M NaC1 intake caused by LPBN methysergide injections. These results indicate that AT, receptors located in the SFO may have a role in mediating an enhanced sodium intake produced by methysergide treatment. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
This study investigated the effects of bilateral injections of the local anesthetic, lidocaine, into the lateral parabrachial nucleus (LPBN) on the dipsogenic and presser responses induced by intracerebroventricular (i.c.v.) injection of angiotensin II (ANG II). Centrally injected ANG II (50 ng/l mu l) induced water intake (10.2 +/- 0.8 ml/h) and presser responses (22 +/- 1 mmHg). Prior bilateral injection of 10% lidocaine (200 nl) into the LPBN increased the water intake (14.2 +/- 1.4 ml/h), but did not change the presser response (17 +/- 1 mmHg) to i.c.v. ANG II. Lidocaine alone injected into the LPBN also induced a presser response (23 +/- 3 mmHg). These results showing that bilateral LPBN injection of lidocaine increase water intake induced by i.c.v. ANG II are consistent with electrolytic and neurotoxic lesion studies and suggest that the LPBN is associated with inhibitory mechanisms controlling water intake induced by ANG II. These results also provide evidence that it is feasible to reversibly anesthetize this brain area to facilitate fluid-related ingestive behavior.
Resumo:
Electrolyte lesion and ibotenic acid lesion of the lateral preoptic area (LPO) of the rat were used to study the participation of this area in drinking behavior. Drinking was induced by cellular dehydration, hypovolemia, hypotension, and water deprivation. The animals with electrolytic lesion of the LPO showed a significant reduction in water intake in response to cellular dehydration, hypotension, and deprivation. The animals with ibotenic acid lesion of the LPO increased the water consumption produced by subcutaneous (SC) injection of hypertonic saline. The amount of water intake after SC injection of polyethyleneglycol (PEG) or isoprenaline was similar in control and ibotenic acid-lesioned animals. The rats with ibotenic acid lesion of the LPO drank significantly more water than control animals. Fibers of passage may also influence the drinking response, and the LPO may have osmosensitive receptors that facilitate water intake in connection with other areas of the central nervous system (CNS) that are implicated in drinking behavior.