206 resultados para WATER ACTIVITY
Resumo:
The water produced by the Cristais River Drinking Water Treatment Plant (CR-DWTP) repeatedly produced mutagenic responses that could not be explained by the presence of disinfection byproducts (DBPs) generated by the reaction of humic acids and chlorine. In order to determine the possible role of chlorinated dye products in this mutagenic activity, solutions of a black dye commercial product (BDCP) composed of C. I. Disperse Blue 373, C. I. Disperse Orange 37, C. I. Disperse Violet 93, and chemically reduced BDCP (R-BDCP) were chlorinated in a manner similar to that used by the CR-DWTP. The resulting solutions were extracted with XAD-4 along with one drinking water sample collected from the CR-DWTP. All extracts showed mutagenic activity in the Salmonella/microsome assay. Dye components of the BDCP as well as its reduced chlorinated (Cl-R-BDCP) derivative were detected in the drinking water sample by analysis with a high performance liquid chromatography/diode array detector (HPLC/DAD). The mutagenicity results of these products suggest that they are, at least in part, accounting for the mutagenic activity detected in the drinking water samples from the Cristais River. The data obtained in this study have environmental and health implications because the chlorination of the BDCP and the R-BDCP leads to the formation of mutagenic compounds (Cl-BDCP and Cl-R-BDCP), which are potentially important disinfection byproducts that can contaminate the drinking water as well as the environment.
Resumo:
This investigation reports the results of tests performed in a laboratory with solid waste samples from an area belonging to Sibelco Mineracao Ltd., which is located around Analandia municipality, nearly in the center of São Paulo State, Brazil. Dissolution and leaching essays were realized under different experimental conditions in four samples collected from the mining front and decantation pool, with the aim of evaluating the possibility of release of several constituents to the liquid phase.
Resumo:
We studied how solvent, stirring method, PhIO/MnP molar ratio, presence of water and axial ligand affect the catalytic activities of Mn(TPP)Cl, Mn(MNPP)Cl, Mn(TDCPP)Cl and Mn(TFPP)Cl in the oxidation of cyclohexane by PhIO. A study of the catalytic intermediates in the reaction between Mn(TPP)Cl or Mn(TDCPP)Cl and PhIO was also carried out by UV-Vis and EPR spectroscopies. The reaction of Mn(TPP)Cl with PhIO showed the formation of a mixture of species Mn-IV(OP+ and Mn-V(O)P as intermediates, which were confirmed by the deconvolution of the UV-Vis spectra. Addition of imidazole as cocatalyst favoured the formation of the intermediate species Mn-V(O)P, evidenced by the UV-Vis band at 408 nm. The corresponding EPR spectra gave evidence that in the presence of imidazole, Mn-IV(OP+ species are formed only in very low amounts. For Mn(TDCPP)Cl the dominating intermediate species is Mn-IV(OP+. Addition of imidazole to halogen-substituted MnP systems does not result in increase of the C-ol yields because very stable bis-imidazole-MnP complexes are formed. Anchoring of such MnP on imidazole propyl gel (IPG) results in better catalytic activity because in this case, the catalyst is mono-coordinated to the support and imidazole favours the formation of the intermediate species Mn-V(O)P.
Resumo:
The contamination of water by metal compounds is a worldwide environmental problem. Concentrations of metals are widely related to biochemical values which are used in disease diagnosis due to environmental toxicity. The acute combined effects of cadmium and nickel on biochemical parameters were determined and compared with those of Cd2+ or Ni2+ alone in rats. Male adult rats were given drinking solutions of CdCl2 [Cd(II) cation, 100 mg/liter] or NiSO4 [Ni(II) cation, 100 mg/liter]. For the combined treatment, the animals (Ni+Cd) received both Ni(II)) cation (100 mg/liter) and Cd(II) cation (100 mg/liter). Nickel treatment induced increased alanine transaminase (ALT) activity and hepatotoxicity, but not renal injury. In contrast, cadmium exposure produced hepatic, renal and myocardial damage, characterized by increased creatinine, total and direct bilirubin concentrations and increased ALT and lactate dehydrogenase (LDH) activities. The combined effect Ni-Cd is less toxic than cadmium alone, suggesting antagonism between these toxicants. The toxicity of nickel and cadmium, alone and in combination, decreased Cu-Zn superoxide dismutase (SOD) activity and increased lipoperoxide formation. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The digestive gland of Pomacea lineata, a prosobranch gastropod mollusc inhabiting both fresh water and land, does not contain cholinomimetic compounds as do the glands of species of Aplysia, marine opisthobranch gastropods, in which both acetylcholine and urocanylcholine are present. The only pharmacological action detected for the digestive gland of Pomacea was spasmogenic activity of a crude homogenate containing 0.1 g tissue equivalents on the snail's own esophagus bathed in 10 ml of a physiological solution prepared on the basis of the animal's hemolymph composition. The spamodic activity was not blocked by atropine, bromlysergic acid diethylamide or anthazoline.
Resumo:
Synthesis and X-ray structure of a dinuclear platinum(II) complex with the ligand saccharin(sac) are described. The structure shows two approximately square-planar platinum centers. Each platinum atom is coordinated to one water molecule and three N-bonded saccharinate ligands. The two centers are linked through two potassium atoms. Each potassium atom interacts with six oxygen atoms from hydration and coordinated water molecules and from carbonyl and sulfonate groups of the ligands. It is suggested that, in aqueous solution, the dimeric structure of the complex is dissociated and the monomeric species K[Pt(sac)(3)(H2O)] is formed. The complex was dissolved in water and submitted to in vitro cytotoxic analyses using HeLa cells (human cervix cancer). It was shown that the monomeric complex elicited a potent cytotoxic activity when compared to the vehicle-treated cells. The IC50 value for the monomeric complex is 6.8 mu M, a little bit higher than that obtained for cisplatin. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Pollution, industrial solvents, concentrations of metals and other environmental agents are widely related to biochemicals values which are used in disease diagnosis of environmental toxicity. A rat bioassay validated for the identification of toxic effects of eutrophication revealed increased serum activities of amylase, alanine transaminase (BLT) and alkaline phosphatase (ALP) in rats that received algae, filtered water and nickel or cadmium from drinking water. Serum Cu-Zn superoxide dismutase activity decreased from its basal level of 40.8 +/- 2.3 to 26.4 U/mg protein, at 7 days of algae and at 48 hr of nickel and cadmium water ingestion. The observation that lipoperoxide concentration was not altered in rats treated with filtered water, while amylase, ALT and ALP were increased in these rats and in those treated with nickel or cadmium, indicated that pancreatic, hepatic and osteogenic lesions by eutrophication were not related to superoxide radicals, and might be due to a novel toxic environmental agent found in filtered and non-filtered algae water.
Resumo:
Rhizopus microsporus var. rhizopodiformis produced high levels of alpha-amylase and glucoamylase under solid state fermentation, with several agricultural residues, such as wheat bran, cassava flour, sugar cane bagasse, rice straw, corncob and crushed corncob as carbon sources. These materials were humidified with distilled water, tap water, or saline solutions-Segato Rizzatti (SR), Khanna or Vogel. The best substrate for amylase production was wheat bran with SR saline solution (1:2 v/v). Amylolytic activity was still improved (14.3%) with a mixture of wheat bran, corncob, starch and SR saline solution (1:1:0.3:4.6 w/w/w/v). The optimized culture conditions were initial pH 5, at 45 degrees C during 6 days and relative humidity around 76%. The crude extract exhibited temperature and pH optima around 65 degrees C and 4-5, respectively. Amylase activity was fully stable for 1 h at temperatures up to 75 degrees C, and at pH values between 2.5 and 7.5.
Resumo:
When cement hydrated compositions are analyzed by usual initial mass basis TG curves to calculate mass losses, the higher is the amount of additive added or is the combined water content, the higher is the cement 'dilution' in the initial mass of the sample. In such cases, smaller mass changes in the different mass loss steps are obtained, due to the actual smaller content of cement in the initial mass compositions. To have a same mass basis of comparison, and to avoid erroneous results of initial components content there from, thermal analysis data and curves have to be transformed on cement calcined basis, i.e. on the basis of cement oxides mass present in the calcined samples or on the sample cement initial mass basis.The paper shows and discusses the fundamentals of these bases of calculation, with examples on free and combined water analysis, on calcium sulfate hydration during false cement set and on quantitative evaluation and comparison of pozzolanic materials activity.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The phagocytic process in cells depends on lysosomal enzymes, high-energy metabolism and cellular recognition. In this paper, we investigated the presence of energy and recognition factors in thrombocytes of turtle Phrynopys hilarii (a freshwater South American species). Turtle thrombocytes (P. hilarii) present glycogen - possibly β particles - dispersed in their cytoplasm and glycoproteins in the cell surface, as well as a large number of enzymes involved in the endocytic process (Pellizzon, 1996). The activity of these enzymes depends on high-energy metabolism and on cellular recognition provided by specific glycoconjugates (Alberts et al., 1994). This metabolic characterization is demonstrated by the large amount of glycogen particles observed in the cytoplasm by Thiéry's method. Glycogen labeling was also observed when concanavalin A-peroxidase was used as a marker for thrombocytes and for endocyted charcoal particles. Our results show that these cells have phagocytic ability, suggesting that their function in blood circulation is not limited to aggregation but may also involve a great potential for phagocytosis.
Resumo:
The natural naphthopyranones paepalantine (1), paepalantine-9O-β-D-glucopyranoside (2) and paepalantine-9-O-β-D-allopyranosyl-(1→6)-O-β-D-glucopyranoside (3) were separated in a preparative scale from the ethanolic extract of the capitula of Paepalanthus bromelioides by high-speed counter-current chromatography (HSCCC). The solvent system used was composed of water-ethanol-ethyl acetate-hexane (10:4:10:4, v/v/v/v). This technique led to the separation of the three different naphthopyranone glycosides in pure form in approximately 7 hours. Paepalantine showed a good antioxidant activity when assayed by the DPPH radical spectrophotometric assay.
Resumo:
This experiment was conducted to evaluate the acetochlor, atrazine and oxyfluorfen herbicides plant selectivity, in relation to glutathione S-transferase activity (GST) in maize (Zea mays L.), sorghum (Sorghum bicolor L.) and wheat (Triticum aestivum L) (Poaceae) plants. GST activity was detected 24, 48 and 72 hours after treatment applications. The experiment's treatments consisted of spraying plants with water (control), acetochlor (3 L.ha -1), atrazine (4 L.ha -1) and oxyfluorfen (1 L.ha -1). The highest GST activities were observed in presence of acetochlor, mainly at 48 hours after treatment. These increments were 105, 148 and 118% when compared to maize, sorghum and wheat control groups, respectively. It is suggested that the GST may have a role in acetochlor degradation and it may be a reason for this herbicide's selectivity in these crops.
Synthesis, characterization, and biological activity of a new palladium(II) complex with deoxyalliin
Resumo:
Synthesis, characterization, and biological activity of a new water-soluble Pd(II)-deoxyalliin (S-allyl-L-cysteine) complex are described in this article. Elemental and thermal analysis for the complex are consistent with the formula [Pd(C6H10NO2S)2]. 13C NMR, 1H NMR, and IR spectroscopy show coordination of the ligand to Pd(II) through S and N atoms in a square planar geometry. Final residue of the thermal treatment was identified as a mixture of PdO and metallic Pd. Antiproliferative assays using aqueous solutions of the complex against HeLa and TM5 tumor cells showed a pronounced activity of the complex even at low concentrations. After incubation for 24 h, the complex induced cytotoxic effect over HeLa cells when used at concentrations higher than 0.40 mmol/L. At lower concentrations, the complex was nontoxic, indicating its action is probably due to cell cycle arrest, rather than cell death. In agreement with these results, the flow cytometric analysis indicated that after incubation for 24 h at low concentrations of the complex cells are arrested in G0/G1. © 2005 NRC Canada.