289 resultados para Slit Pores


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silica gel surfaces, organofunctionalized with 2-mercaptobenzimidazole, iminosalicylaldehyde and imidazole groups were examined using the small angle X-ray scattering technique (SAXS). From the scattering intensity data it was concluded that particles have a uniform size after the coupling reaction. The chemical treatment of the silica gel leads to an attachment of the organofunctional groups on the solid-pore interface of the silica with an increase of the mean size of the solid phase and some coalescence of the pores. © 1989.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews the influence of particle size distribution, agglomerates, rearrangement, sintering atmospheres and impurities on the pore evolution of some commonly studied oxides. These factors largely affect sintering mechanisms due to modifications of diffusion coefficients or evaporation-condensation. Very broad particle size distribution leads to grain growth and agglomerates densify first. Rearrangement of particles due to neck asymmetry mainly in the early stage of sintering is responsible for a high rate of densification in the first minutes of sintering by collapse of large pores. Sintering atmospheres play an important role in both densification and pore evolution. The chemical interaction of water molecules with several oxides like MgO, ZnO and SnO2 largely affects surface diffusion. As a consequence, there is an increase in the rates of pore growth and densification for MgO and ZnO and in the rate of pore growth for SnO2. Carbon dioxide does not affect the rate of sintering of MgO but greatly affects both rates of pore growth and densification of ZnO. Oxygen concentration in the atmosphere can especially affect semiconductor oxides but significantly affects the rate of pore growth of SnO2. Impurities like chlorine ions increase the rate of pore growth in MgO due to evaporation of HCl and Mg(OH)Cl, increasing the rate of densification and particle cuboidization. CuO promotes densification in SnO2, and is more effective in dry air. The rate of densification decrease and pore widening are promoted in argon. An inert atmosphere favors SnO2 evaporation due to reduction of CuO. © 1990.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the electrolyte (NH+ 4, Cl-) on the drying of SnO2 hydrogels was investigated by linear shrinkage, mass loss, gravimetric thermal analysis and infrared spectroscopy. Results show that the drying mechanism for monolithic SnO2 gels is highly dependent on the concentration of the electrolyte solution inside the pores. For higher concentrations, the drying process is governed by capillary forces while for the smaller ones (≤20 mM) syneresis shrinkage becomes predominant just before the end of the first drying period. This phenomenon is related to condensation reaction among the superficial OH groups and may hamper formation of monolithic SnO2. © 1992 Elsevier Science Publishers B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fruits of okra (Abelmoschus esculentus (L.) Moench.) cv. Amarelinho were harvested at three times: 35, 45 and 55 days after anthesis. Half part of the fruits of each harvest time was shelled and the seeds were dried in natural environment of laboratory or in dry chamber. The other half was dried unshelled in the same two conditions. Water contents of seeds were evaluated at harvest time and before the germination test, that was carried out when the seeds were in hygroscopic equilibrium with the two environments. The physiological quality of seeds was affected by the interaction effects of fruit age, drying method and drying condition. The highest values for percentage of germination were obtained from seeds taken from fruits 55 days old (up to 92%) and the hard seeds percentage was not affected by drying method and drying condition. The seeds from fruits of 35 and 45 days old had the germination percentage increased when dried inside the fruit in natural environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal spray coatings as Cr3C2-NiCr obtained by high velocity oxy-fuel spraying (HVOF) are mainly applied due to their behaviour against aggressive erosive-abrasive and corrosive atmospheres and their thermal stability at high temperatures [1]. In order to increase the corrosion protection that it offers to the substrate trying to close the interconnected pores, it is possible to apply a thermal treatment with the gun during the spraying of the coating. This treatment could be applied in different ways. One of these ways consists of spraying only a few layers of coating followed by thermal treatment and finally the spray of the rest of layers. This thermal treatment on spraying is studied related to the corrosion properties of the system. The study comprises the electrochemical characterisation of the system by open circuit potential (OC), polarisation resistance (Rp), cyclic voltammetry (CV) and impedance spectroscopy measurements (EIS). Optical and scanning electron microscopy characterisation (OM and SEM) of the top and cross-section of the system has been used in order to justify the electrochemical results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dorsal diaphragm of Camponotus rufipes (Hymenoptera: Formicidae) is a thin membrane structure, with free edges between the points of attachment to the body wall that almost cover the whole extension of the dorsal vessel at its abdominal portion. A layer of fat body cells covers the region of the cuticle above the dorsal vessel and the incurrent ostia can be a vertical or horizontal slit in the wall of the heart. One organized structure as a network ofalary muscles was observed holding the heart at its middorsal position and supporting the pericardial cells too. A great number of pericardial cells were found laterally associated with the heart and cellular projections from those cells insert directly into the heart wall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studied the morphology of oocytes of Brycon orbignyanus, (Osteichthyes, Characidae), through observation in Scanning Electron Microscopy (SEM). Fragments of the ovaries from adult females were collected. During the reproductive period, a hormonal induction in females was carried out to collect the oocytes after extrusion. The samples were fixed and processed for observation in SEM. Results showed that the oocytes of B. orbignyanus had a follicular epithelium formed by a single layer of cells with compressed shape, covering the whole radiatta zone that showed a smooth and regular surface with innumerable pores. The micropyle had a funnel-shaped, containing several furrows. The oocyte surface around the micropyle presented pores closer of each other than the other surface areas of radiatta zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report preparation and the singular filtration properties of an ultrafiltration membrane made with MSU-type mesoporous silica that exhibits cylindrical pores aligned mostly normal to the support. This membrane supported on tubular commercial macroporous alumina supports was prepared by the interfacial growth mechanism between stable silica-surfactant hybrid micelles made of the association of silica oligomers with polyethyleneoxide-based (PEO) surfactants and sodium fluoride, a well-known silica condensation catalyst. It appears that the combined effect of the silica nature of the membrane, whose surface charge can be easily adjusted by changing the pH and the non-connected cylindrical shape of the pores provides a new behavior in the retention properties, as proved by the filtration of polyoxyethylene polymers (PEO) with different molecular weights. Depending on the filtration conditions, a rejection rate of 80 % and a steep cut-off at 2,000 Da can be obtained or, on the reverse, polymers three times bigger than the pore diameter can diffuse through the membrane. This new filtration mechanism, which opens up new modes of separation modes, is explained in the light of both topology of the porous network and pH-dependent interactions between PEO polymers and silica porous media. © 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Baccaconularia Hughes, Gunderson et Weedon, 2000, from the Furongian Series (Cambrian System) of the north-central USA, has been interpreted as a conulariid cnidarian, based on a suite of gross morphological similarities shared only with other post-Cambrian genera currently assigned to this group. Closely spaced, squarish to subrectangular facial nodes of Baccaconularia are aligned in distinct longitudinal files. Nodes also display a subtler, more or less rectilinear transverse alignment, though this pattern commonly is disrupted by offset parallel to the longitudinal files. In their shape and pattern of arrangement, the nodes of Baccaconularia are most similar to the squarish to elongate nodes of Pseudoconularia Bouček, 1939. Longitudinal node files of Baccaconularia may also be compared with the longitudinal facial ridges of Conularia cambria Walcott, 1890 from the Furongian of Wisconsin. Apical angles of Baccaconularia range from approximately 13° to 14.5°. Scanning electron imaging of B. cf. robinsoni shows that its thin, phosphatic skeleton is finely lamellar, with the thickness of individual lamellae measuring approximately 1 μm. The skeleton also exhibits microscopic circular pores and crater-like pits that range from approximately 5 to 10 μm in diameter. These pores and pits are similar in size, geometry, areal density and pattern of arrangement to those of many post-Cambrian conulariids. Microscopic circular pores are documented here for the first time in the genus Archaeoconularia Bouček, 1939 from the Upper Ordovician of the Czech Republic. Although the origin of the pores and pits is open to alternative interpretations, the discovery of these features and fine lamination in Baccaconularia strengthens the argument that this genus is a Cambrian conulariid. © 2006 Nanjing Institute of Geology and Palaeontology, CAS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conventional system for soil management and preparation has the intensive mechanization as its basic principle and that changes soil properties, especially physical ones, faster and significantly. This study aimed to obtain and compare physical properties such as distribution of particle sizes, density, distribution of pore sizes, curves of water retention and degradation index of a Red Latosol, under intensive cultivation and no-cultivation for six years. Soil samples were collected at depths of 0.1, 0.2, 0.3, 0.4, 0.6, 0.8 and 1.0 m. There was a clay increment as a result of cultivated soil increase. The no-till soil density decreased as depth increased; however, in the arable layer (0.3 m) of the cultivated soil, the opposite was verified. The largest volume of pores was verified in the cultivated soil, especially in the superficial layers. In the smallest applied tension (0.001 MPa), the cultivated soil retained more water; however, starting from 0.033 MPa, the highest humidity values occurred in the no-till soil. The highest degradation index was observed at a depth of 0.1 m in no-till soil. However, that value was superior (0.020) to what is physically considered very poor soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to analyze the morphological and histological characteristics of eggs from six triatomine species in order to obtain a generic and specific characterization of this group of Trypanosoma cruzi vectors and better understand their phylogenetic and taxonomic aspects. The eggs of the respective species came from the collection of the Laboratório de Triatomíneos e Culicídeos da Faculdade de Saúde Pública/USP, from the Insetário do Serviço Especial de Saúde de Araraquara - SESA and from the Triatomine insectary of the Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos (FIOCRUZ), in Rio de Janeiro. Morphological studies were done with optical microscopy and scanning electron microscopy. Histological analyses used only optical microscopy. All of the species analyzed showed a predominance of hexagonal cells. The exchorion of Triatoma breyeri Del Ponte, T. costalimai Verano & Galvão, and T. tibiamaculata (Pinto) consists of unornamented cells, overlapping or slightly separated, with a smooth, padded appearance. Meanwhile, in T. matogrossensis Leite & Barbosa, T. sherlocki Papa, Juberg, Carcavallo, Cerqueira & Barata, and T. williami Galvão, Souza & Lima, the exchorion cells are ornamented on their entire surface with perforations and fissures. Egg histology showed undulations, pores, and orifices. The study helps to expand the generic and specific knowledge of the Triatominae subfamily. The characteristics identified in the exchorion of the eggshells can help separate close species. These new parameters will back the elaboration of future dichotomous keys, help to determine each vector species' role and expand knowledge of the various species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present research was to investigate the ultrastructural peculiarities of the aortic wall of the rat. Seven young adult rats were used, from which fragments of the infrarenal abdominal aorta were collected. After collection, the vascular segments were fixed and sent for analysis by scanning electron microscope. The elastic lamellae appear interposed with smooth muscular fibers; this pattern was verified mainly at the medial layer structure. Among the mural elements a well defined interrelationship was established through connective lamellae of the arterial wall. The collagen lamellae mainly provided anchoring among the elastic and smooth muscular constituents. The intimal layer showed special ultrastructural features, such as a non-continuous inner elastic lamina presented in certain sites of the vascular wall, followed by endothelial pores. This mural pattern of the abdominal aorta provided support to vascular functions such as shrinkage among the laminar composition of the arterial layers, also acting in mechanical properties of the vascular wall, such as viscoelasticity and contractility - essential actions to blood vessel hemodynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous titanium scaffolds are promising materials for biomedical applications such as prosthetic anchors, fillers and bone reconstruction. This study evaluated the bone/titanium interface of scaffolds with interconnected pores prepared by powder metallurgy, using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Porous scaffolds and dense samples were implanted in the tibia of rabbits, which were subsequently killed 1, 4, and 8 weeks after surgery. Initial bone neoformation was observed one week after implantation. Bone ingrowth in pores and the Ca/P ratio at the interface were remarkably enhanced at 4 and 8 weeks. The results showed that the interconnected pores of the titanium scaffolds promoted bone ingrowth, which increased over time. The powder metallurgy technique thus proved effective in producing porous scaffolds and dense titanium for biomedical applications, allowing for adequate control of pore size and porosity and promoting bone ingrowth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work has as objective to demonstrate technical and economic viability of hydrogen production utilizing glycerol. The volume of this substance, which was initially produced by synthetic ways (from oil-derived products), has increased dramatically due mainly to biodiesel production through transesterification process which has glycerol as main residue. The surplus amount of glycerol has been generally utilized to feed poultry or as fuel in boilers, beyond other applications such as production of soaps, chemical products for food industry, explosives, and others. The difficulty to allocate this additional amount of glycerol has become it in an enormous environment problem, in contrary to the objective of biodiesel chain, which is to diminish environmental impact substituting oil and its derivatives, which release more emissions than biofuels, do not contribute to CO2-cycle and are not renewable sources. Beyond to utilize glycerol in combustion processes, this material could be utilized for hydrogen production. However, a small quantity of works (theoretical and experimental) and reports concerning this theme could be encountered. Firstly, the produced glycerol must be purified since non-reacted amounts of materials, inclusively catalysts, contribute to deactivate catalysts utilized in hydrogen production processes. The volume of non-reacted reactants and non-utilized catalysts during transesterification process could be reutilized. Various technologies of thermochemical generation of hydrogen that utilizes glycerol (and other fuels) were evaluated and the greatest performances and their conditions are encountered as soon as the most efficient technology of hydrogen production. Firstly, a physicochemical analysis must be performed. This step has as objective to evaluate the necessary amount of reactants to produce a determined volume of hydrogen and determine thermodynamic conditions (such as temperature and pressure) where the major performances of hydrogen production could be encountered. The calculations are based on the process where advance degrees are found and hence, fractions of products (especially hydrogen, however, CO2, CO, CH4 and solid carbon could be also encountered) are calculated. To produce 1 Nm3/h of gaseous hydrogen (necessary for a PEMFC - Proton Exchange Membrane Fuel Cell - containing an electric efficiency of about 40%, to generate 1 kWh), 0,558 kg/h of glycerol is necessary in global steam reforming, 0,978 kg/h of glycerol in partial oxidation and cracking processes, and 0,782 kg/h of glycerol in autothermal reforming process. The dry reforming process could not be performed to produce hydrogen utilizing glycerol, in contrary to the utilization of methane, ethanol, and other hydrocarbons. In this study, steam reforming process was preferred due mainly to higher efficiencies of production and the need of minor amount of glycerol as cited above. In the global steam reforming of glycerine, for one mole of glycerol, three moles of water are necessary to produce three moles of CO2 and seven moles of H2. The response reactions process was utilized to predict steam reforming process more accurately. In this mean, the production of solid carbon, CO, and CH4, beyond CO2 and hydrogen was predicted. However, traces of acetaldehyde (C2H2), ethylene (C2H4), ethylene glycol, acetone, and others were encountered in some experimental studies. The rates of determined products obviously depend on the adopted catalysts (and its physical and chemical properties) and thermodynamic conditions of hydrogen production. Eight reactions of steam reforming and cracking were predicted considering only the determined products. In the case of steam reforming at 600°C, the advance degree of this reactor could attain its maximum value, i.e., overall volume of reactants could be obtained whether this reaction is maintained at 1 atm. As soon as temperature of this reaction increases the advance degree also increase, in contrary to the pressure, where advance degree decrease as soon as pressure increase. The fact of temperature of reforming is relatively small, lower costs of installation could be attained, especially cheaper thermocouples and smaller amount of thermo insulators and materials for its assembling. Utilizing the response reactions process in steam reforming, the predicted volumes of products, for the production of 1 Nm3/h of H2 and thermodynamic conditions as cited previously, were 0,264 kg/h of CO (13% of molar fraction of reaction products), 0,038 kg/h of CH4 (3% of molar fraction), 0,028 kg/h of C (3% of molar fraction), and 0,623 kg/h of CO2 (20% of molar fraction). Through process of water-gas shift reactions (WGSR) an additional amount of hydrogen could be produced utilizing mainly the volumes of produced CO and CH4. The overall results (steam reforming plus WGSR) could be similar to global steam reforming. An attention must to be taking into account due to the possibility to produce an additional amount of CH4 (through methanation process) and solid carbon (through Boudouard process). The production of solid carbon must to be avoided because this reactant diminishes (filling the pores) and even deactivate active area of catalysts. To avoid solid carbon production, an additional amount of water is suggested. This method could be also utilized to diminish the volume of CO (through WGSR process) since this product is prejudicial for the activity of low temperature fuel cells (such as PEMFC). In some works, more three or even six moles of water are suggested. A net energy balance of studied hydrogen production processes (at 1 atm only) was developed. In this balance, low heat value of reactant and products and utilized energy for the process (heat supply) were cited. In the case of steam reforming utilizing response reactions, global steam reforming, and cracking processes, the maximum net energy was detected at 700°C. Partial oxidation and autothermal reforming obtained negative net energy in all cited temperatures despite to be exothermic reactions. For global steam reforming, the major value was 114 kJ/h. In the case of steam reforming, the highest value of net energy was detected in this temperature (-170 kJ/h). The major values were detected in the cracking process (up to 2586 kJ/h). The exergetic analysis has as objective, associated with physicochemical analysis, to determine conditions where reactions could be performed at higher efficiencies with lower losses. This study was performed through calculations of exergetic and rational efficiencies, and irreversibilities. In this analysis, as in the previously performed physicochemical analysis, conditions such as temperature of 600°C and pressure of 1 atm for global steam reforming process were suggested due to lower irreversibility and higher efficiencies. Subsequently, higher irreversibilities and lower efficiencies were detected in autothermal reforming, partial oxidation and cracking process. Comparing global reaction of steam reforming with more-accurate steam reforming, it was verified that efficiencies were diminished and irreversibilities were increased. These results could be altered with introduction of WGSR process. An economic analysis could be performed to evaluate the cost of generated hydrogen and determine means to diminish the costs. This analysis suggests an annual period of operation between 5000-7000 hours, interest rates of up to 20% per annum (considering Brazilian conditions), and pay-back of up to 20 years. Another considerations must to be take into account such as tariffs of utilized glycerol and electricity (to be utilized as heat source and (or) for own process as pumps, lamps, valves, and other devices), installation (estimated as US$ 15.000 for a plant of 1 Nm3/h) and maintenance cost. The adoption of emission trading schemes such as carbon credits could be performed since this is a process with potential of mitigates environment impact. Not considering credit carbons, the minor cost of calculated H2 was 0,16288 US$/kWh if glycerol is also utilized as heat sources and 0,17677 US$/kWh if electricity is utilized as heat sources. The range of considered tariff of glycerol was 0-0,1 US$/kWh (taking as basis LHV of H2) and the tariff of electricity is US$ 0,0867 US$/kWh, with demand cost of 12,49 US$/kW. The costs of electricity were obtained by Companhia Bandeirante, localized in São Paulo State. The differences among costs of hydrogen production utilizing glycerol and electricity as heat source was in a range between 0,3-5,8%. This technology in this moment is not mature. However, it allows the employment generation with the additional utilization of glycerol, especially with plants associated with biodiesel plants. The produced hydrogen and electricity could be utilized in own process, increasing its final performance.