198 resultados para Sisal fibre. Epoxy resin. Unidirectional aligned composites


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brazil is the only country in South America to have an automotive supplier sector based on natural fibers. New opportunities are arising due to an increase demand by the car makers in applying natural fibers in their parts. Several crop fibers have been developed in Brazil. Among them can be listed caroa, piacava, pupunha, mutum and others of regional application. For the automotive industry, which requires large quantities with uniform quality, the alternatives are sisal (170,000 ton/yr), curaua (150 ton/yr in 2003), malva, 200 ton/yr; Brazil is the single largest producer country of sisal, and commercially, the only one in curaua. For South America, the alternatives are fique in Colombia, abaca in equator, flax in Argentina and curaua in Venezuela. It must be understood by the target countries of drugs, is that crop fiber can be an economic alternative to coca in the Andes region, therefore an instrument of land reform and drug reduction plantations. Several companies have a strong program of apply natural fibers based components in their products: Volkswagen do Brazil, DaimlerChrysler, General Motors do Brazil. Among their suppliers can be listed companies such Pematec (curaua), Toro (sisal, coir and jute), Incomer (sisal and jute), Ober (jute, curaua), Indaru (jute and sisal), Antolin (imported kenaf,) Tapetes Sao Carlos (sisal), Poematec (coir) and Art-Gore, with Woodstock'' wood and natural fibers). Figures about production and demand are discussed in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses the results of biodegradability tests of natural fibers used by the automotive industry, namely: coir, coir with latex, and sisal. The biodegradation of coir, coir with latex, and of sisal fibers was determined by monitoring the production of carbon dioxide (CO(2)) (IBAMA-E.1.1.2, 1988) and fungal growth (DIN 53739, 1984). The contents of total extractives, lignin, holocellulose, ashes, carbon, nitrogen and hydrogen of the fibers under study were determined in order to ascertain their actual content and to understand the results of the biodegradation tests. The production of CO(2) indicated low biodegradation, i.e., about 10% in mass, for all the materials after 45 days of testing; in other words, no material inhibited glucose degradation. However, the percentage of sisal fiber degradation was fourfold higher than that of coir with latex in the same period of aging. The fungal growth test showed a higher growth rate on sisal fibers, followed by coir without latex. In the case of coir with latex, we believe the fungal growth was not intense, because natural latex produces a bactericide or fungicide for its preservation during bleeding [1]. An evaluation of the materials after 90 days of aging tests revealed breaking of the fibers, particularly sisal and coir without latex, indicating fungal attack and biodegradation processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stitched fabrics have been widely studied for potential application in aircraft structures since stitch yarns offer improvements in the out-of-plane mechanical properties and also can save time in the lay up process. The down side of stitch yarns came up in the manufacturing process of fabric in which defects introduced by the needle movement creating fiber-free-zones, fiber breakage and misalignment of fibers. The dry stitched carbon fabric preform has mainly been used in the Resin Transfer Molding (RTM) process which high fiber content is aimed, those defects influence negatively the injection behavior reducing the mechanical properties of final material. The purpose of this research work focused on testing in quasi-static mechanical mode (in-plane tension) of a monocomponent resin CYCOM (R) 890 RTM/carbon fiber anti-symmetric quadriaxial fabric stitched by PE 80Dtex yarn processed by RTM. The evaluation consisted in comparing the scatter of the quasi-static test with the attenuation of ultrasonic maps, which show the path of the resin and possible dry spots considering that interference of yarn in resin flow is detectable in ultrasonic measurement. Microscopic analysis was also considered for further evaluation in case of premature failure. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of UV-C irradiation of the TPS and PCL biocomposites with sisal bleached fibers was investigated. The biocomposite was UV-C irradiated at room temperature under air atmosphere. The structural and morphological changes produced when the films were exposed to UV irradiation for 142 h, were monitored using Scanning Electron Microscopy (SEM), Mechanical Tensile Tests, Differential Scanning Calorimetry (DSC), X-ray diffraction, Thermogravimetric analysis (TGA), and Fourier transform infra-red analysis (FTIR). Addition of 5-10% fibers in composites exhibited improved mechanical and thermal properties attributed to more efficient dispersibility of fiber in the matrix and good compatibility between fibers and the matrix polymer, however, after irradiated, the tensile properties decreased due to chain scission. The samples of irradiated PCL and IFS showed crystallinity increase, whereas the blend and composites showed a decrease in crystallinity. The DSC and X-ray diffraction studies suggested interaction between polymers in the blend via carboxyl groups in thermoplastic starch-PCL and hydroxyl groups in fibers. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: A restorative material for Class III cavities must, besides being functional, be esthetically satisfactory, providing good working conditions and several shade and color options. A clinical evaluation was initiated to compare the suitability of resin composite and glass-ionomer cement materials for such restorations.Method and materials: Forty-two Class III conservative cavities, esthetically important because of facial extensions, were selected. Resin composite restorations were placed in 21 cavities, and the remaining 21 were restored with glass-ionomer cement. The following characteristics were studied: color or-esthetics, anatomic shape, surface texture, staining, marginal infiltration, dental plaque retention, and occurrence of fracture. After 24 months, the restorations were evaluated.Results: the only statistically significant difference between the resin composite and glass-ionomer cement restorations in the experimental period involved color or esthetics.Conclusion: Resin composites and glass-ionomer materials provide excellent functional and esthetic results in Class III cavities when properly indicated.