575 resultados para Shear bond strength test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. To test the hypothesis that multiple firing and silica deposition on the zirconia surface influence the bond strength to porcelain.Materials and methods. Specimens were cut from yttria-stabilized zirconia blocks and sintered. Half of the specimens (group S) were silica coated (physical vapor deposition (PVD)) via reactive magnetron sputtering before porcelain veneering. The remaining specimens (group N) had no treatment before veneering. The contact angle before and after silica deposition was measured. Porcelain was applied on all specimens and submitted to two (N2 and S2) or three firing cycles (N3 and S3). The resulting porcelain-zirconia blocks were sectioned to obtain bar-shaped specimens with 1 mm(2) of cross-sectional area. Specimens were attached to a universal testing machine and tested in tension until fracture. Fractured surfaces were examined using optical microscopy. Data were statistically analyzed using two-way ANOVA, Tukey's test (alpha = 0.05) and Weibull analysis.Results. Specimens submitted to three firing cycles (N3 and S3) showed higher mean bond strength values than specimens fired twice (N2 and S2). Mean contact angle was lower for specimens with silica layer, but it had no effect on bond strength. Most fractures initiated at porcelain-zirconia interface and propagated through the porcelain.Significance. The molecular deposition of silica on the zirconia surface had no influence on bond strength to porcelain, while the number of porcelain firing cycles significantly affected the bond strength of the ceramic system, partially accepting the study hypothesis. Yet, the Weibull modulus values of S groups were significantly greater than the m values of N groups. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the bond strength of indirect restorations to dentin using self-adhesive cements with and without the application of adhesive systems.Material and Methods: Seventy-two bovine incisors were used, in which the buccal surfaces were ground down to expose an area of dentin measuring a minimum of 4 x 4 mm. The indirect resin composite Resilab was used to make 72 blocks, which were cemented onto the dentin surface of the teeth and divided into 4 groups (n = 18): group 1: self-adhesive resin cement BiFix SE, applied according to manufacturer's recommendations; group 2: self-adhesive resin cement RelyX Unicem, used according to manufacturer's recommendations; group 3: etch-and-rinse Solobond M adhesive system + BiFix SE; group 4: etch-and-rinse Single Bond 2 adhesive system + RelyX Unicem. The specimens were sectioned into sticks and subjected to microtensile testing in a universal testing machine (EMIC DL-200MF). Data were subjected to one-way ANOVA and Tukey's test (alpha = 5%).Results: The mean values (+/- standard deviation) obtained for the groups were: group 1: 15.28 (+/- 8.17)(a), group 2: 14.60 (+/- 5.21)(a), group 3: 39.20 (+/- 9.98)(c), group 4: 27.59 (+/- 6.57)(b). Different letters indicate significant differences (ANOVA; p = 0.0000).Conclusion: The application of adhesive systems before self-adhesive cements significantly increased the bond strength to dentin. In group 2, RelyX Unicem associated with the adhesive system Single Bond 2 showed significantly lower mean tensile bond strengths than group 3 (BiFix SE associated with the etch-and-rinse Solobond M adhesive system).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of silica coating and 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-based primer applications upon the bonding durability of a MDP-based resin cement to a yttrium stabilized tetragonal zirconia (Y-TZP) ceramic. Ninety-six Y-TZP tabs were embedded in an acrylic resin (free surface for adhesion: 5 x 5 mm(2)), ground finished and randomly divided into four groups (N = 24) according to the ceramic surface conditioning: (1) cleaning with isopropanol (ALC); (2) ALC + phosphoric acid etching + MDP-based primer application (MDP-primer); (3) silica coating + 3-methacryloyloxypropyl trimethoxysilane (MPS)-based coupling agent application (SiO(2) + MPS-Sil); and (4) SiO(2) + MDP-primer. The MDP-based resin cement was applied on the treated surface using a cylindrical mold (diameter=3 mm). Half of the specimens from each surface conditioning were stored in distilled water (37 C, 24 h) before testing. Another half of the specimens were stored (90 days) and thermo-cycled (12,000x) during this period (90d/TC) before testing. A shear bond strength (SBS) test was performed at a crosshead speed of 0.5 mm/min. Two factors composed the experimental design: ceramic conditioning strategy (in four levels) and storage condition (in two levels), totaling eight groups. After 90d/TC (Tukey; p < 0.05), SiO(2) + MDP-primer (24.40 MPa) promoted the highest SBS. The ALC and MDP-primer groups debonded spontaneously during 90d/TC. Bonding values were higher and more stable in the SiO2 groups. The use of MDP-primer after silica coating increased the bond strength. (C) 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part 8: Appl Biomater 95B: 69-74, 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of surface hydration state and application method on the microtensile bond strength of one-step self-etching adhesives systems to cut enamel.Materials and Methods: One hundred ninety-five bovine teeth were used. The enamel on the buccal side was flattened with 600-grit SiC paper. For the control group, 15 teeth received Adper Single Bond 2, applied according to manufacturer's recommendations. The other specimens were divided into three groups according to the adhesive system used: Futura Bond M (FM; Voco), Clearfil S-3 Bond (CS; Kuraray), and Optibond All in One (OA; Kerr). For each group, two hydration states were tested: D: blown dry with air; W: the excess of water was removed with absorbent paper. Two application methods were tested: P (passive): the adhesive was simply left on the surface; A (active): the adhesive was rubbed with an applicator point. A coat of Grandio composite resin (Voco) was applied on the surface. The teeth were sectioned to obtain enamel-resin sticks (1 x 1 mm), which underwent microtensile bond testing. The data in MPa were submitted to a three-way ANOVA and Tukey's test (alpha = 5%).Results: The ANOVA showed significant differences for application method and the type of adhesive, but not for hydration state. For the application method, the results of Tukey's test were: P: 31.46 (+/-7.09)a; A: 34.04 (+/-7.19)b. For the type of adhesive, the results were: OA: 31.29 (+/-7.05)a; CS: 32.28 (+/-7.14)a; FM: 34.68 (+/-7.17)b; different lower-case letters indicate statistically significant differences.Conclusion: Active application improved the bond strength to cut enamel. The adhesive Futurabond M showed the highest bond strength to cut enamel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To evaluate the microtensile bond strength (mu TBS) of one-(Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Material and Methods: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n = 10). The restored teeth were stored in distilled water at 37 C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm(2) cross-sectional area, which were subjected to mu TBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The mu TBS data in MPa were subjected to three-way analysis of variance and Tukey's test (alpha = 0.05). Results: The interaction effect for all three factors was statistically significant (three-way ANOVA, p < 0.001). All eight experimental means (MPa) were compared by the Tukey's test (p < 0.05) and the following results were obtained: Tyrian-One Step Plus /C&B/24 h (22.4 +/- 7.3); Tyrian-One Step Plus /Variolink II/24 h (39.4 +/- 11.6); Xeno III/C&B/24 h (40.3 +/- 12.9); Xeno III/Variolink II/24 h (25.8 +/- 10.5); Tyrian-One Step Plus / C&B/90 d (22.1 +/- 12.8) Tyrian-One Step Plus/VariolinkII/90 d (24.2 +/- 14.2); Xeno III/C&B/90 d (27.0 +/- 13.5); Xeno III/Variolink II/90 d (33.0 +/- 8.9). Conclusions: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statement of problem. Two problems found in prostheses with resilient liners are bond failure to the acrylic resin base and increased permanent deformation due to material aging.Purpose. This in vitro study evaluated the effect of varying amounts of thermal cycling on bond strength and permanent deformation of 2 resilient denture liners bonded to an acrylic resin base.Material and methods. Plasticized acrylic resin (PermaSoft) or silicone (Softliner) resilient lining materials were processed to a heat-polymerized acrylic resin (QC-20). One hundred rectangular specimens (10 X 10-mm(2) cross-sectional area) and 100 cylindrically-shaped specimens (12.7-mm diameter X 19.0-mm height) for each liner/resin combination were used for the tensile and deformation tests, respectively. Specimen shape and liner thickness were standardized. Specimens were divided into 9 test groups (n=10) and were thermal cycled for 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, and 4000 cycles. Control specimens (n=10) were stored for 24 hours in water at 37degreesC. Mean bond strength, expressed as stress at failure (MPa), was determined with a tensile test using a universal testing machine at a crosshead speed of 5 mm/min. Analysis of failure mode, expressed as a percent (%), was recorded as either cohesive, adhesive, or both, after observation. Permanent deformation, expressed as a percent (%), was determined using ADA specification no. 18. Data from both tests were examined with a 2-way analysis of variance and a Tukey test (alpha=.05).Results. For the tensile test, Softliner specimens submitted to different thermal cycling regimens demonstrated no significantly different bond strength values from the control; however, there was a significant difference between the PermaSoft control group (0.47 +/- 0.09 MPa [mean +/- SD]) and the 500 cycle group (0.46 +/- 0.07 MPa) compared to the 4000 cycle group (0.70 +/- 0.20 MPa) (P<.05). With regard to failure type, the Softliner groups presented adhesive failure (100%) regardless of specimen treatment. PermaSoft groups presented adhesive (53%), cohesive (12%), or a combined mode of failure (35%). For the deformation test, there was no significant difference among the Softliner specimens. However, a significant difference was observed between control and PermaSoft specimens after 1500 or more cycles (1.88% +/- 0.24%) (P<.05).Conclusions. This in vitro study indicated that bond strength and permanent deformation of the 2 resilient denture liners tested varied according to their chemical composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of mechanical cycling on the bond strength of fiber posts bonded to root dentin. The hypotheses examined were that bond strength is not changed after fatigue testing and bond strength does not present vast variations according to the type of fiber post. Sixty crownless, single-rooted human teeth were endodontically treated, with the space prepared at 12 mm. Thirty specimens received a quartz fiber post (Q-FRC (DT Light-Post), and the remaining 30 specimens received a glass fiber post (G-FRC) (FRC Postec Plus). All the posts were resin luted (All Bond+Duolink), and each specimen was embedded in a cylinder with epoxy resin. The specimens were divided into six groups: G1-Q-FRC+no cycling, G2- Q-FRC+20,000 cycles (load: 50N, angle of 45 degrees; frequency: 8Hz); G3- Q-FRC+2,000,000 cycles; G4- G-FRC+no cycling; G5- G-FRC+20,000 cycles; G6- GFRC+2,000,000 cycles. The specimens were cut perpendicular to their long axis, forming 2-mm thick disc-samples, which were submitted to the push-out test. ANOVA (alpha=.05) revealed that: (a) QFRC (7.1 +/- 2.2MPa) and G-FRC (6.9 +/- 2.1MPa) were statistically similar (p=0.665); (b) the no cycling groups (7.0 +/- 2.4MPa), 20,000 cycles groups (7.0 +/- 2.1MPa) and 2,000,000 cycles groups (7.0 +/- 2.0MPa) were statistically similar (p=0.996). It concluded that mechanical cycling did not affect the bond strength of two fiber posts bonded to dentin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. This study evaluated the effect of two different surface conditioning methods on the repair bond strength of a bis-GMA-adduct/bis-EMA/TEGDMA based resin composite after three aging conditions.Methods. Thirty-six composite resin blocks (Esthet X, Dentsply) were prepared (5 mm x 6 mm x 6 mm) and randomly assigned into three groups for aging process: (a) immersion in citric acid (pH 3.0 at 37 degrees C, 1 week) (CA); (b) boiling in water for 8h (BW) and (c) thermocycling (x5000, 5-55 degrees C, dwell time: 30s) (TC). After aging, the blocks were assigned to one of the following surface conditioning methods: (1) silica coating (30 mu m SiOx) (CoJet, 3M ESPE) + silane (ESPE-Sil) (CJ), (2) phosphoric acid + adhesive resin (Single Bond, 3M ESPE) (PA). Resin composite (Esthet.X (R)) was bonded to the conditioned substrates incrementally and light polymerized. The experimental groups formed were as follows: Gr1:CA + PA; Gr2:CA + CJ Gr3:BW + PA; Gr4: BW + CJ; Gr5:TC + PA; Gr6: TC + CJ. The specimens were sectioned in two axes (x and y) with a diamond disc under coolant irrigation in order to obtain non-trimmed bar specimens (sticks, 10 mm x 1 mm x 1 mm) with 1 mm(2) of bonding area. The microtensile test was accomplished in a universal testing machine (crosshead speed: 0.5 mm min(-1)).Results. The means and standard deviations of bond strength (MPa +/- S.D.) per group were as follows: Gr1: 25.5 +/- 10.3; Gr2: 46.3 +/- 10.1; Gr3: 21.7 +/- 7.1; Gr4: 52.3 +/- 15.1; GrS: 16.1 +/- 5.1; Gr6, 49.6 +/- 13.5. The silica coated groups showed significantly higher mean bond values after all three aging conditions (p < 0.0001) (two-way ANOVA and Tukey tests, alpha = 0.05). The interaction effect revealed significant influence of TC aging on both silica coated and acid etched groups compared to the other aging methods (p < 0.032). Citric acid was the least aggressive aging medium.Significance. Chairside silica coating and silanization provided higher resin-resin bond strength values compared to acid etching with phosphoric acid followed by adhesive resin applications. Thermocycling the composite substrates resulted in the lowest repair bond strength compared to citric acid challenge or boiling in water. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. This study evaluated the durability of bond strength between resin cement and a feldspathic ceramic submitted to different etching regimens with and without silane coupling agent application.Methods. Thirty-two blocks (6.4 mm x 6.4 mm x 4.8 mm) were fabricated using a microparticulate feldspathic ceramic (Vita VM7), ultrasonically cleaned with water for 5 min and randomly divided into four groups, according to the type of etching agent and silanization method: method 1, etching with 10% hydrofluoric (HF) acid gel for I min + silanization; method 2, HF only; method 3, etching with 1.23% acidulated phosphate fluoride (APF) for 5 min + silanization; method 4, APF only. Conditioned blocks were positioned in their individual silicone molds and resin cement (Panavia F) was applied on the treated surfaces. Specimens were stored in distilled water (37 degrees C) for 24 h prior to sectioning. After sectioning the ceramic-cement blocks in x- and Y-axis with a bonded area of approximately 0.6 mm(2), the microsticks of each block were randomly divided into two storage conditions: Dry, immediate testing; TC, thermal cycling (12,000 times) + water storage for 150 d, yielding to eight experimental groups. Microtensile bond strength tests were performed in universal testing machine (cross-head speed: 1 mm/min) and failure types were noted. Data obtained (MPa) were analyzed with three-way ANOVA and Tukey's test (alpha = 0.05).Results. Significant influence of the use of silane (p < 0.0001), storage conditions (p = 0.0013) and surface treatment were observed (p = 0.0014). The highest bond strengths were achieved in both dry and thermocycled conditions when the ceramics were etched with HF acid gel and silanized (17.4 +/- 5.8 and 17.4 +/- 4.8 MPa, respectively). Silanization after HF acid gel and APT treatment increased the results dramatically (14.5 +/- 4.2-17.4 +/- 4.8 MPa) compared to non-silanized groups (2.6 +/- 0.8-8.9 +/- 3.1 MPa) where the failure type was exclusively (100%) adhesive between the cement and the ceramic.Significance. Silanization of the feldspathic ceramic surface after APF or HF acid etching increased the microtensile bond strength results significantly, with the latter providing higher results. Long-term thermocycling and water storage did not decrease the results in silanized groups. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STATEMENT OF PROBLEM: Because water sorption of autopolymerizing acrylic reline resins is accompanied by volumetric change, it is a physical property of importance. As residual monomer leaches into the oral fluids and causes tissue irritation, low solubility of these resins is desired. Another requirement is a satisfactory bond between the autopolymerizing acrylic resins and the denture base acrylic resin. PURPOSE: This study compared the water sorption, solubility, and the transverse bond strength of 2 autopolymerizing acrylic resins (Duraliner II and Kooliner) and 1 heat-polymerizing acrylic resin (Lucitone 550). MATERIAL AND METHODS: The water sorption and solubility test was performed as per International Standards Organization Specification No. 1567 for denture base polymers. Bond strengths between the autopolymerizing acrylic resins and the heat-polymerizing acrylic resin were determine with a 3-point loading test made on specimens immersed in distilled water at 37 degrees C for 50 hours and for 30 days. Visual inspection determined whether failures were adhesive or cohesive. RESULTS: Duraliner II acrylic resin showed significantly lower water sorption than Kooliner and Lucitone 550 acrylic resins. No difference was noted in the solubility of all materials. Kooliner acrylic resin demonstrated significantly lower transverse bond strength to denture base acrylic resin and failed adhesively. The failures seen with Duraliner II acrylic resin were primarily cohesive in nature. CONCLUSIONS: Autopolymerizing acrylic reline resins met water sorption and solubility requirements. However, Kooliner acrylic resin demonstrated significantly lower bond strength to denture base acrylic resin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The objective of this study was to test the following hypothesis: the silica coating on ceramic surface increases the bond strength of resin cement to a ceramic. Materials and Methods: In-Ceram Alumina blocks were made and the ceramic surface was treated: G1 - sandblasting with 110-μm aluminum oxide particles; G2 - Rocatec System: tribochemicai silica coating (Rocatec-Pre powder + Rocatec-Plus powder + Rocatec-Sil); G3 - CoJet System: silica coating (CoJet-Sand) + ESPE-Sil. The ceramic blocks were cemented to composite blocks with Panavia F resin cement (under a load of 750 g/1 min). The cemented blocks were stored in distilled water at 37°C for 7 days and sectioned along the x and y axes with a diamond disk. Samples with an adhesive area of ca 0.8 mm 2 (n = 45) were obtained. The samples were attached to an adapted device for the microtensile test, which was performed in a universal testing machine (EMIC) at a crosshead speed of 1 mm/min. Results: The obtained results were submitted to ANOVA and Tukey's test. Mean values of tensile strength (MPa) and standard deviation values were: (G1) 16.8 ± 3.2; (G2) 30.6 ± 4.5; (G3) 33.0 ± 5.0. G2 and 63 presented greater tensile strength than G1. There was no significant difference between G2 and G3. All the failures took place at the ceramic/resin cement interface. Conclusion: The silica coating (Rocatec or CoJet systems) of the ceramic surface increased the bond strength between the Panavia F resin cement and alumina-based ceramic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Thirty blocks (5×5×4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VITA) were fabricated according to the manufacturer's instructions and duplicated in resin composite. The specimens were polished and assigned to one of the following three treatment conditions (n=10): (1) Airborne particle abrasion with 110 μm Al2O3 particles + silanization, (2) Silica coating with 110 μm SiOx particles (Rocatec Pre and Plus, 3M ESPE) + silanization, (3) Silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. The ceramic-composite blocks were cemented with the resin cement (Panavia F) and stored at 37 °C in distilled water for 7 days prior to bond tests. The blocks were cut under coolant water to produce bar specimens with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (cross-head speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using ANOVA and Tukey's test (α≤0.05). Silica coating with silanization either using 110 μm SiOx or 30 μm SiOx particles increased the bond strength of the resin cement (24.6±2.7 MPa and 26.7±2.4 MPa, respectively) to the zirconia-based ceramic significantly compared to that of airborne particle abrasion with 110-μm Al2O3 (20.5±3.8 MPa) (ANOVA, P<0.05). Conditioning the INC-ZR ceramic surfaces with silica coating and silanization using either chairside or laboratory devices provided higher bond strengths of the resin cement than with airborne particle abrasion using 110 μm Al2O3. © 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To test the bond strength between a quartz-fiber-reinforced composite post (FRC) and a resin cement. The null hypothesis was that the bond strength can be increased by using a chairside tribochemical silica-coating system. Materials and Methods: Thirty quartz-FRCs (Light-Post) were divided into 3 groups according to the post surface treatment: G1) Conditioning with 32% phosphoric acid (1 min), applying a silane coupling agent; G2) etching with 10% hydrofluoric acid (1 min), silane application; G3) chairside tribochemical silica coating method (CoJet System): air abrasion with 30-μ SiO x-modified Al2O3 particles, silane application. Thereafter, the posts were cemented into a cylinder (5 mm diameter, 15 mm height) with a resin cement (Duo-Link). After cementation, the specimens were stored in distilled water (37°C/24 h) and sectioned along the x and y axes with a diamond wheel under cooling (Lab-cut 1010) to create nontrimmed bar specimens. Each specimen was attached with cyanoacrylate to an apparatus adapted for the microtensile test. Microtensile testing was conducted on a universal testing machine (1 mm/min). The data obtained were submitted to the one-way ANOVA and Tukey test (α = 0.05). Results: A significant influence of the conditioning methods was observed (p < 0.0001). The bond strength of G3 (15.14 ± 3.3) was significantly higher than the bond strengths of G1 (6.9 ± 2.3) and G2 (12.60 ± 2.8) (p = 0.000106 and p = 0.002631, respectively). Notwithstanding the groups, all the tested specimens showed adhesive failure between the resin cement and FRC. Conclusion: The chairside tribochemical system yielded the highest bond strength between resin cement and quartz-fiber post. The null hypothesis was accepted (p < 0.0001).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (In-Ceram Zirconia) ceramics. Materials and Methods: Ten blocks (5 ×6 × 8 mm) of In-Ceram Alumina (AL), In-Ceram Zirconia (ZR), and Procera (PR) ceramics were fabricated according to each manufacturer's instructions and duplicated in composite. The specimens were assigned to one of the two following treatment conditions: (1) airborne particle abrasion with 110-μm Al2O3 particles + silanization, (2) silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. Each ceramic block was duplicated in composite resin (W3D-Master, Wilcos, Petrópolis, RJ, Brazil) using a mold made out of silicon impression material. Composite resin layers were incrementally condensed into the mold to fill up the mold and each layer was light polymerized for 40 s. The composite blocks were bonded to the surface-conditioned ceramic blocks using a resin cement system (Panavia F, Kuraray, Okayama, Japan). One composite resin block was fabricated for each ceramic block. The ceramic-composite was stored at 37°C in distilled water for 7 days prior to bond tests. The blocks were cut under water cooling to produce bar specimens (n = 30) with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (crosshead speed: 1 mm/min). Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (≤ 0.05). Results: Silica coating with silanization increased the bond strength significantly for all three high-strength ceramics (18.5 to 31.2 MPa) compared to that of airborne particle abrasion with 110-μm Al2O3 (12.7-17.3 MPa) (ANOVA, p < 0.05). PR exhibited the lowest bond strengths after both Al2O3 and silica coating (12.7 and 18.5 MPa, respectively). Conclusion: Conditioning the high-strength ceramic surfaces with silica coating and silanization provided higher bond strengths of the resin cement than with airborne particle abrasion with 110-μm Al2O3 and silanization.