284 resultados para Screw Dislocation
Resumo:
Background: The bone tissue responses to Cyanoacrylate have been described in the literature, but none used N-butyl-2-cyanoacrilate (NB-Cn) for bone graft fixation. Purpose: The aims of the study were: (a) to analyze the bone grafts volume maintenance fixed either with NB-Cn or titanium screw; (b) to assess the incorporation of onlay grafts on perforated recipient bed; and (c) the differences of expression level of tartrate-resistant acid phosphatase (TRAP) protein involved in bone resorption. Materials and Methods: Eighteen New Zealand White rabbits were submitted to calvaria onlay grafting on both sides of the mandible. On one side, the graft was fixed with NB-Cn, while on the other hand the bone graft was secured with an osteosynthesis screw. The computed tomography (CT) was performed just after surgery and at animals sacrifice, after 1 (n=9) and 6weeks (n=9), in order to estimate the bone grafts volume along the experiments. Histological sections of the grafted areas were prepared to evaluate the healing of bone grafts and to assess the expression of TRAP protein. Results: The CT scan showed better volume maintenance of bone grafts fixed with NB-Cn (p≤0.05) compared with those fixed with screws, in both experimental times (analysis of variance). The immunohistochemical evaluation showed that the TRAP expression in a 6-week period was significantly higher compared with the 1-week period, without showing significant difference between the groups (Wilcoxon and Mann-Whitney). Histological analysis revealed that the NB-Cn caused periosteum damage, but provided bone graft stabilization and incorporation similar to the control group. Conclusion: The perforation provided by screw insertion into the graft during fixation may have triggered early revascularization and remodeling to render increased volume loss compared with the experimental group. These results indicate that the NB-Cn possesses equivalent properties to titanium screw to be used as bone fixation material in osteosynthesis. © 2010 Wiley Periodicals, Inc.
Resumo:
In the majority of cases of bone fracture requiring surgery, orthopedic implants (screw-plate and screw) are used for osteosynthesis and the infections associated with such implants are due to the growth of microorganisms in biofilms. The objective of this study was to identify microorganisms recovered from osteosynthesis implants used to fix bone fractures, to assess the viability of the cells and the ability of staphylococci to adhere to a substrate and to determine their sensitivity/resistance to antimicrobials. After surgical removal, the metal parts of austenitic stainless steel (ASTM F138/F139 or ISO NBR 5832-1/9) were transported to the Laboratory of Clinical Microbiology, washed in buffer and subjected to ultrasonic bath at 40±2 kHz for 5 minutes. The sonicated fluid was used to seed solid culture media and cell viability was assessed under the microscope by with the aid of a fluorescent marker. The production of extracellular polysaccharide by Staphylococcus spp. was investigated by means of adhesion to a polystyrene plate. The profile of susceptibility to antimicrobials was determined by the disk diffusion assay. The most frequently isolated bacteria included coagulase-negative Staphylococcus resistant to erythromycin, clindamycin and oxacillin. Less frequent were Pseudomonas aeruginosa resistant to trimethoprim/sulfamethoxazole and ampicillin, Acinetobacter baumannii resistant to ceftazidime, Enterobacter cloacae resistant to cephalothin, cefoxitin, cefazolin, levofloxacin and ciprofloxacin, Bacillus spp. and Candida tropicalis. The observation of slides by fluorescence microscope showed clusters of living cells embedded in a transparent matrix. The test for adherence of coagulase-negative Staphylococcus to a polystyrene plate showed that these microorganisms produce extracellular polysaccharide. In conclusion, the metal parts were colonized by bacteria related to orthopedic implant infection, which were resistant to multiple antibiotics.
Resumo:
Objective: Biological and mechanical implant-abutment connection complications and failures are still present in clinical practice, frequently compromising oral function. The purpose of this study was to evaluate the reliability and failure modes of anterior single-unit restorations in internal conical interface (ICI) implants using step-stress accelerated life testing (SSALT). Materials and methods: Forty-two ICI implants were distributed in two groups (n = 21 each): group AT-OsseoSpeed™ TX (Astra Tech, Waltham, MA, USA); group SV-Duocon System Line, Morse Taper (Signo Vinces Ltda., Campo Largo, PR, Brazil). The corresponding abutments were screwed to the implants and standardized maxillary central incisor metal crowns were cemented and subjected to SSALT in water. Use-level probability Weibull curves and reliability for a mission of 50,000 cycles at 200 N were calculated. Differences between groups were assessed by Kruskal-Wallis along with Bonferroni's post-hoc tests. Polarized-light and scanning electron microscopes were used for failure analyses. Results: The Beta (β) value derived from use level probability Weibull calculation was 1.62 (1.01-2.58) for group AT and 2.56 (1.76-3.74) for group SV, indicating that fatigue was an accelerating factor for failure of both groups. The reliability for group AT was 0.95 and for group SV was 0.88. Kruskal-Wallis along with Bonferroni's post-hoc tests showed no significant difference between the groups tested (P > 0.27). In all specimens of both groups, the chief failure mode was abutment fracture at the conical joint region and screw fracture at neck's region. Conclusions: Reliability was not different between investigated ICI connections supporting maxillary incisor crowns. Failure modes were similar. © 2012 John Wiley & Sons A/S.
Resumo:
Metallic biomaterials are used to reinforce or to restore the form and function of hard tissues. Implants and prosthesis are used to replace shoulders, knees, hips and teeth. When these materials are inserted in bone several biological reactions happen. This process can be associated to surface properties (topography, roughness and surface energy). In this work, the influence of biomimetic surface treatment in the osseointegration of Ti-30Ta dental implants was evaluated. Ingots were obtained from titanium and tantalum by using an arc-melting furnace. They were submitted to heat treatment at 1,100°C for 1 h, cooled in water and cold worked by swaging. Then, screw-shaped implants (2.0 mm diameter by 2.5 mm length) were manufactured and they were implanted in a rat's femur. Animals were divided into two groups: untreated (control group) and treated (biomimetic surface treatment). They were sacrificed 30 days after implantation. For histological analysis, implants with surrounding tissue were removed and immersed in formaldehyde. Samples were embedded in polymethyl methacrylate and after polymerization, cut with a saw, polished and mounted on glass slides. The results obtained suggest that biomimetic surface treatment was able to promote an increase osseointegration on the surface of dental implants. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
Recent studies have evaluated many methods of internal fixation for sagittal split ramus osteotomy (SSRO), aiming to increase stability of the bone segments while minimizing condylar displacement. The purpose of this study was to evaluate, through biomechanical testing, the stability of the fixation comparing a specially designed bone plate to other two commonly used methods. Thirty hemimandibles were separated into three equal groups. All specimens received SSRO. In Group I the osteotomies were fixed with three 15 mm bicortical positional screws in an inverted-L pattern with an insertion angle of 90°. In Group II, fixation was carried out with a four-hole straight plate and four 6 mm monocortical screws. In Group III, fixation was performed with an adjustable sagittal plate and eight 6 mm monocortical screws. Hemimandibles were submitted to vertical compressive loads, by a mechanical testing unit. Averages and standard deviations were submitted to analysis of variance using the Tukey test with a 5% level of significance. Bicortical screws presented the greatest values of loading resistance. The adjustable miniplate demonstrated 60% lower resistance compared to bicortical screws. Group II presented on average 40% less resistant to the axial loading. © 2012 International Association of Oral and Maxillofacial Surgeons.
Resumo:
Objective. This study aimed to investigate the stress distribution in screwed implant-supported prostheses with different implant-abutment connections by using a photoelastic analysis. Materials and methods. Four photoelastic models were fabricated in PL-2 resin and divided according to the implant-abutment connection (external hexagon (EH) and Morse taper (MT) implants (3.75 × 11.5 mm)) and the number crowns (single and 3-unit piece). Models were positioned in a circular polariscope and 100-N axial and oblique (45) loading were applied in the occlusal surface of the crowns by using a universal testing machine. The stresses were photographically recorded and qualitatively analyzed using software (Adobe Photoshop). Results. Under axial loading, the MT implants exhibited a lower number of fringes for single-unit crowns than EH implants, whereas for a 3-unit piece the MT implants showed a higher number of fringes vs EH implants. The oblique loading increased the number of fringes for all groups. Conclusion. In conclusion, the MT implant-abutment connection reduced the amount of stress in single-unit crowns, for 3-unit piece crowns the amount of stress was lower using an external hexagon connection. The stress pattern was similar for all groups. Oblique loading promoted a higher stress concentration than axial loading. © Informa Healthcare.
Resumo:
Atrophic mandible fractures are frequently a challenge to stabilize. This study evaluated, through mechanical testing in vitro, the number of locking screws that is sufficient to withstand loading when applied with a locking reconstruction plate in the fixation of atrophic mandible fractures. Polyurethane mandibles with a simulated linear fracture at the midline were used as substratum. Results show that resistance of the fixation is poor when one and two screws are used on each side of the fracture. Three screws on each side of the fracture significantly increases the resistance to displacement. However, no additional strength is added to the construct when more than three screws per side are used. © 2013 International Association of Oral and Maxillofacial Surgeons.
Resumo:
The retaining screw of the implant-supported dental prosthesis is the weakest point of the crown/implant system. Furthermore, crown height is another important factor that may increase the lever arm. Therefore, the aim of this study was to assess the stress distribution in implant prosthetic screws with different heights of the clinical crown of the prosthesis using the method of three-dimensional finite element analysis. Three models were created with implants (3.75 mm × 10 mm) and crowns (heights of 10, 12.5 and 15 mm). The results were visualised by means of von Mises stress maps that increased the crown heights. The screw structure exhibited higher levels of stresses in the oblique load. The oblique loading resulted in higher stress concentration when compared with the axial loading. It is concluded that the increase of the crown was damaging to the stress distribution on the screw, mainly in oblique loading. © 2013 Taylor & Francis.
Resumo:
Objectives: This in vitro study compared the dimensional accuracy of stone index (I) and three impression techniques: tapered impression copings (T), squared impression copings (S) and modified squared impression copings (MS) for implant-supported prostheses. Methods: A master cast, with four parallel implant abutment analogs and a passive framework, were fabricated. Vinyl polysiloxane impression material was used for all impressions with two metal stock trays (open and closed tray). Four groups (I, T, S and MS) were tested (n = 5). A metallic framework was seated on each of the casts, one abutment screw was tightened, and the gap between the analog of implant and the framework was measured with a stereomicroscope. The groups' measurements (80 gap values) were analyzed using software (LeicaQWin - Leica Imaging Systems Ltd.) that received the images of a video camera coupled to a Leica stereomicroscope at 100× magnification. The results were statistically analyzed with Kruskal-Wallis One Way ANOVA on Ranks test followed by Dunn's Method, 0.05. Results: The mean values of abutment/framework interface gaps were: Master Cast = 32 μm (SD 2); Group I = 45 μm (SD 3); Group T = 78 μm (SD 25); Group S = 134 μm (SD 30); Group MS = 143 μm (SD 27). No significant difference was detected among Index and Master Cast (P = .05). Conclusion: Under the limitations of this study, it could be suggested that a more accurate working cast is possible using tapered impression copings techniques and stone index. © 2013 Japan Prosthodontic Society.
Resumo:
The effects of the moisture content of the raw material, extrusion temperature and screw speed on flavor retention, sensory acceptability and structure of corn grits extrudates flavored with isovaleraldehyde, ethyl butyrate and butyric acid were investigated. Higher temperature resulted in more expanded extrudates with lower density and cutting force, while higher moisture content increased ethyl butyrate retention. The most acceptable extrudates were those obtained with low moisture content, under conditions of high extrusion temperature and high screw speed, or low screw speed and low extrusion temperature, whereas the aroma intensity closest to the ideal was observed under conditions of low extrusion temperature and low moisture content of the raw material. © 2013 Elsevier Ltd.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)