345 resultados para SCALAR
Resumo:
Quadratic gravity in (2+1)D is nonunitarity at the tree level. When a topological Chern-Simons term is added to this theory, the harmless massive scalar mode of the former gives rise to a troublesome massive spin-0 ghost, while the massive spin-2 ghost is replaced by two massive physical particles both of spin-2. Therefore, unlike what it is claimed in the literature, quadratic Chern-Simons gravity in (2+1)D is nonunitary at the tree level.
Resumo:
We show that Peccei-Quinn and lepton number symmetries can be a natural outcome in a 3-3-1 model with right-handed neutrinos after imposing a Z(11)circle timesZ(2) symmetry. This symmetry is suitably accommodated in this model when we augment its spectrum by including merely one singlet scalar field. We work out the breaking of the Peccei-Quinn symmetry, yielding the axion, and study the phenomenological consequences. The main result of this work is that the solution to the strong CP problem can be implemented in a natural way, implying an invisible axion phenomenologically unconstrained, free of domain wall formation, and constituting a good candidate for the cold dark matter.
Resumo:
We show that by imposing local Z(13)circle timesZ(3) symmetries in an SU(2)circle timesU(1) electroweak model we can implement an invisible axion in such a way that (i) the Peccei-Quinn symmetry is an automatic symmetry of the classical Lagrangian, and (ii) the axion is protected from semiclassical gravitational effects. In order to be able to implement such a large discrete symmetry, and at the same time allow a general mixing in each charge sector, we introduce right-handed neutrinos and enlarge the scalar sector of the model. The domain wall problem is briefly considered.
Resumo:
The pion electromagnetic form factor is calculated with a light-front quark model. The plus and minus components of the electromagnetic current are used to calculate the electromagnetic form factor in the the Breit frame with two models for the q (q) over bar vertex. The light-front constituent quark model describes very well the hadronic wave functions for pseudo-scalar and vector particles. Symmetry problems arising in the light-front approcah are solved by the pole dislocation method. The results are compared with new experimental data and with other quark models.
Resumo:
The problem of computing the effective nonrelativistic potential U-D for the interaction of charged-scalar bosons, within the context of D-dimensional electromagnetism with a cutoff, is reduced to quadratures. It is shown that U-3 cannot bind a pair of identical charged-scalar bosons; nevertheless, numerical calculations indicate that boson-boson bound states do exist in the framework of three-dimensional higher-derivative electromagnetism augmented by a topological Chern-Simons term.
Resumo:
We consider the implementation of CP violation in the context of 331 models. In particular we treat a model where only three scaler triplets are needed in order to give all fermions a mass while keeping neutrino massless. In this case all CP violation is provided by the scalar sector.
Resumo:
We construct static and time dependent exact soliton solutions for a theory of scalar fields taking values on a wide class of two dimensional target spaces, and defined on the four dimensional space-time S-3 X R. The construction is based on an ansatz built out of special coordinates on S3. The requirement for finite energy introduce boundary conditions that determine an infinite discrete spectrum of frequencies for the oscillating solutions. For the case where the target space is the sphere S-2, we obtain static soliton solutions with nontrivial Hopf topological charges. In addition, such Hopfions can oscillate in time, preserving their topological Hopf charge, with any of the frequencies belonging to that infinite discrete spectrum. (C) 2005 American Institute of Physics.
Resumo:
We consider a model with soft CP violation which accommodates the CP violation in the neutral kaons even if we assume that the Cabibbo-Kobayashi-Maskawa mixing matrix is real and the sources of CP violation are three complex vacuum expectation values and a trilinear coupling in the scalar potential. We show that for some reasonable values of the masses and other parameters the model allows us to explain all the observed CP violation processes in the K-0-(K) over bar (0) system.
Resumo:
By considering a statistical model for the quark content of the nucleon, where the quark levels are generated by a Dirac equation with a harmonic scalar-plus-vector potential, we note that a good fit for the ratio between the structure functions of the neutron and proton, F-2(n)/F-2(p), can be obtained if different strengths are used for the effective confining potentials of the up and down quarks.
Resumo:
We show that there is a general sort of neutrino effective interactions which allows, under certain conditions, to have relatively large magnetic dipole moments for neutrinos while keeping their masses non-calculable and arbitrarily small. The main ingredient of our mechanism for generating large magnetic moment to the neutrinos is the existence of a neutral scalar which has the only role to give mass to the neutrinos or the existence of flavor changing neutral currents in the neutrino sector. Although our approach is model independent, some models in which those interactions arise are commented.
Resumo:
In this work we compute the most general massive one-loop off-shell three-point vertex in D-dimensions, where the masses, external momenta and exponents of propagators are arbitrary. This follows our previous paper in which we have calculated several new hypergeometric series representations for massless and massive (with equal masses) scalar one-loop three-point functions, in the negative dimensional approach.
Resumo:
In this work, we present the gravitational field generated by a cosmic string carrying a timelike current in the scalar-tensor gravities. The mechanism of formation and evolution of wakes is fully investigated in this framework. We show explicitly that the inclusion of electromagnetic properties for the string induces logarithmic divergences in the accretion problem.
Resumo:
We show that at one-loop order, negative-dimensional, Mellin-Barnes (MB) and Feynman parametrization (FP) approaches to Feynman loop integral calculations are equivalent. Starting with a generating functional, for two and then for n-point scalar integrals, we show how to reobtain MB results, using negative-dimensional and FP techniques. The n-point result is valid for different masses, arbitrary exponents of propagators and dimension.
Resumo:
Applied to the electroweak interactions, the theory of Lie algebra extensions suggests a mechanism by which the boson masses are generated without resource to spontaneous symmetry breaking. It starts from a gauge theory without any additional scalar field. All the couplings predicted by the Weinberg-Salam theory are present, and a few others which are nevertheless consistent within the model.
Resumo:
We show that in SU(3)(C) circle times SU(3)(L) circle times U(1)(N) (3-3-1) models embedded with a singlet scalar playing the role of the axion, after imposing scale invariance, the breaking of Peccei-Quinn symmetry occurs through the one-loop effective potential for the singlet field. We, then, analyze the structure of spontaneous symmetry breaking by studying the new scalar potential for the model, and verify that electroweak symmetry breaking is tightly connected to the 3-3-1 breaking by the strong constraints among their vacuum expectation values. This offers a valuable guide to write down the correct pattern of symmetry breaking for multi-scalar theories. We also obtained that the accompanying massive pseudo-scalar, instead of acquiring mass of order of Peccei-Quinn scale as we would expect, develops a mass at a much lower scale, a consequence solely of the breaking via Coleman-Weinberg mechanism. (c) 2005 Published by Elsevier B.V.