176 resultados para Random Amplified Polymorphic DNA Technique
Resumo:
This study aimed to detect quantitative trait loci (QTL) by fALP (Fluorescent Amplified Fragment Length Polymorphism) markers associated to the trait tomato fruit set at high temperatures. A biparental cross between line Jab-95 (heat-tolerant) and cultivar Caribe (heat-susceptible) was made. A total of 192 plants of the F2 generation were evaluated, generating 172 polymorphic markers through six primer combinations previously identified by the Bulked Segregant Analysis technique. To construct the genetic map, 106 of the 172 markers that segregated in the expected Mendelian segregation proportion (3:1) were used. The map covered 1191.46 cM of the genome. Six trait-linked QTL were identified in the analysis of simple markers and three others by the interval-mapping methodology. These results could be highly useful in improvement programs, since heat-tolerant plants can be selected rapidly, which improves tomato fruit set.
Resumo:
Systems that can distinguish epidemiologically-related Mycobacterium tuberculosis strains from unrelated ones are extremely valuable. Molecular biology techniques have allowed a great deal of information to be acquired about the infectious disease tuberculosis (TB) that was very hard or impossible to obtain by conventional epidemiology. A typing method based on bacterial DNA genome differences, known as RFLP (restriction fragment length polymorphism), is widely used to discriminate strains in the epidemiologic study of TB. However, RFLP is laborious and there is a tendency to replace it by other methods. Thus, other DNA sequences have been employed as epidemiological markers, as in Spoligotyping, a fast technique based on PCR followed by differential hybridization of amplified products. The polymorphism observed among different isolates is probably the product of strain-dependent recombination. MIRU (mycobacterial interspersed repetitive unit) typing is a reproducible and fast assay, involving the generation of genotypes based on the study of 12 loci containing VNTRs (variable-number tandem repeats) in strains of the M. tuberculosis complex. It compares strains from different geographic areas and allows the movement of individual lineages to be tracked, as in RFLP. This approach enables a greater number of isolates to be analyzed, leading to the identification of a larger number of foci of transmission within the population and thus to improved ways of slowing the progress of the disease.
Resumo:
The most significant studies about the spinner dolphin (Stenella longirostris) in the Southwestern Atlantic Ocean were conducted in Fernando de Noronha Archipelago, off Northeastern Brazil. The continuity of these studies depends upon the development of non-invasive methods. In this work, we present results from the skin swabbing sampling procedure for this species. We tested the performance of this method for nuclear and mitochondrial DNA analysis, unknown for this population. A total of skin 161 samples were collected during two expeditions. After the contacts the most of the dolphins remained close to the boat. Microsatellites markers and cytochrome b region primers were evaluated and the respective fragments were successfully amplified. Thus, skin swabbing may be considered an efficient strategy to obtain tissue samples for spinner dolphin genetic analysis in Fernando de Noronha Archipelago.
Resumo:
Background. From shotgun libraries used for the genomic sequencing of the phytopathogenic bacterium Xanthomonas axonopodis pv. citri (XAC), clones that were representative of the largest possible number of coding sequences (CDSs) were selected to create a DNA microarray platform on glass slides (XACarray). The creation of the XACarray allowed for the establishment of a tool that is capable of providing data for the analysis of global genome expression in this organism. Findings. The inserts from the selected clones were amplified by PCR with the universal oligonucleotide primers M13R and M13F. The obtained products were purified and fixed in duplicate on glass slides specific for use in DNA microarrays. The number of spots on the microarray totaled 6,144 and included 768 positive controls and 624 negative controls per slide. Validation of the platform was performed through hybridization of total DNA probes from XAC labeled with different fluorophores, Cy3 and Cy5. In this validation assay, 86% of all PCR products fixed on the glass slides were confirmed to present a hybridization signal greater than twice the standard deviation of the deviation of the global median signal-to-noise ration. Conclusions. Our validation of the XACArray platform using DNA-DNA hybridization revealed that it can be used to evaluate the expression of 2,365 individual CDSs from all major functional categories, which corresponds to 52.7% of the annotated CDSs of the XAC genome. As a proof of concept, we used this platform in a previously work to verify the absence of genomic regions that could not be detected by sequencing in related strains of Xanthomonas. © 2010 Moreira et al; licensee BioMed Central Ltd.
Resumo:
In this paper a framework based on the decomposition of the first-order optimality conditions is described and applied to solve the Probabilistic Power Flow (PPF) problem in a coordinated but decentralized way in the context of multi-area power systems. The purpose of the decomposition framework is to solve the problem through a process of solving smaller subproblems, associated with each area of the power system, iteratively. This strategy allows the probabilistic analysis of the variables of interest, in a particular area, without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. An efficient method for probabilistic analysis, considering uncertainty in n system loads, is applied. The proposal is to use a particular case of the point estimate method, known as Two-Point Estimate Method (TPM), rather than the traditional approach based on Monte Carlo simulation. The main feature of the TPM is that it only requires resolve 2n power flows for to obtain the behavior of any random variable. An iterative coordination algorithm between areas is also presented. This algorithm solves the Multi-Area PPF problem in a decentralized way, ensures the independent operation of each area and integrates the decomposition framework and the TPM appropriately. The IEEE RTS-96 system is used in order to show the operation and effectiveness of the proposed approach and the Monte Carlo simulations are used to validation of the results. © 2011 IEEE.
Resumo:
We tried to amplify mitochondrial, microsatellite and amelogenin loci in DNA from fecal samples of a wild Mazama americana population. Fifty-two deer fecal samples were collected from a 600-ha seasonal semideciduous forest fragment in a subtropical region of Brazil (21°20′, 47°17′W), with the help of a detection dog; then, stored in ethanol and georeferenced. Among these samples 16 were classified as fresh and 36 as non-fresh. DNA was extracted using the QIAamp® DNA Stool Mini Kit. Mitochondrial loci were amplified in 49 of the 52 samples. Five microsatellite loci were amplified by PCR; success in amplification varied according to locus size and sample age. Successful amplifications were achieved in 10/16 of the fresh and in 13/36 of the non-fresh samples; a negative correlation (R = -0.82) was found between successful amplification and locus size. Amplification of the amelogenin locus was successful in 22 of the 52 samples. The difficulty of amplifying nuclear loci in DNA samples extractedfrom feces collected in the field was evident. Some methodological improvements, including collecting fresh samples, selecting primers for shorter loci and quantifying the extracted DNA by real-time PCR, are suggested to increase amplification success in future studies. © FUNPEC-RP.
Resumo:
Background:Hepatitis C is a disease spread throughout the world. Hepatitis C virus (HCV), the etiological agent of this disease, is a single-stranded positive RNA virus. Its genome encodes a single precursor protein that yields ten proteins after processing. NS5A, one of the non-structural viral proteins, is most associated with interferon-based therapy response, the approved treatment for hepatitis C in Brazil. HCV has a high mutation rate and therefore high variability, which may be important for evading the immune system and response to therapy. The aim of this study was to analyze the evolution of NS5A quasispecies before, during, and after treatment in patients infected with HCV genotype 3a who presented different therapy responses.Methods:Viral RNA was extracted, cDNA was synthesized, the NS5A region was amplified and cloned, and 15 clones from each time-point were sequenced. The sequences were analyzed for evolutionary history, genetic diversity and selection.Results:This analysis shows that the viral population that persists after treatment for most non-responder patients is present in before-treatment samples, suggesting it is adapted to evade treatment. In contrast, the population found in before treatment samples from most end-of-treatment responder patients either are selected out or appears in low frequency after relapse, therefore changing the population structure. The exceptions illustrate the uniqueness of the evolutionary process, and therefore the treatment resistance process, in each patient.Conclusion:Although evolutionary behavior throughout treatment showed that each patient presented different population dynamics unrelated to therapy outcome, it seems that the viral population from non-responders that resists the treatment already had strains that could evade therapy before it started. © 2013 Bittar et al.
Resumo:
In a typical protocol for attaching DNA to a gold electrode, thiolated DNA is incubated with the electrode at neutral pH overnight. Here we report fast adsorption of non-thiolated DNA oligomers on gold electrodes at acidic pH (i.e., pH ~3.0). The peak-to-peak potential difference and the redox peak currents in typical cyclic voltammetry of [Fe(CN)6]3- are investigated to monitor the attachment. Compared with incubation at neutral pH, the lower pH can significantly promote the adsorption processes, enabling efficient adsorption even in 30min. The adsorption rate is DNA concentration-dependent, while the ionic strength shows no influence. Moreover, the adsorption is base-discriminative, with a preferred order of A>C≫G, T, which is attributed to the protonation of A and C at low pH and their higher binding affinity to gold surface. The immobilized DNA is functional and can hybridize with its complementary DNA but not a random DNA. This work is promising to provide a useful time-saving strategy for DNA assembly on gold electrodes, allowing fast fabrication of DNA-based biosensors and devices. © 2013 Elsevier Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Genética - IBILCE