147 resultados para Quadratic Fields
Resumo:
In this paper we study the sliding mode of piecewise bounded quadratic systems in the plane given by a non-smooth vector field Z=(X,Y). Analyzing the singular, crossing and sliding sets, we get the conditions which ensure that any solution, including the sliding one, is bounded.
Resumo:
This paper presents an application of Laplace's equation obtained from a quaternionic function that satisfies the Cauchy-Riemann conditions determined earlier by Borges and Machado [#!BorgesZeMarcio!#]. Therefore, we show that it is possible to express in a single equation gravity, electric and magnetic potential fields, and this expression can only be provided due to a function that will be called here the coupling function.
Resumo:
The present work shows a coupling of electrical and gravitational fields through Cauchy-Riemann conditions for quaternions present in a previous paper [1]. It is also obtained an extended version of the Laplace-like equations for quaternions, now written in terms of both electric and gravitational fields.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Let m >= 3 be an integer, zeta(m) is an element of C a primitive mth root of unity, and K-m the cyclotomic field Q(zeta(m)). An explicit description of the integral trace form Tr-Km/Q(x (x) over bar)vertical bar Z[zeta(m)] where (x) over bar is the complex conjugate of x is presented. In the case where m is prime, a procedure for finding the minimum of the form subject to x being a nonzero element of a certain Z- module in Z[zeta(m)] is presented.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper we present a method for evaluating the center density of algebraic lattices from subfields of Q(xi n), where n is a positive integer. This method allows to reproduce rotated versions of dense lattices in some dimensions. Constellations on algebraic lattices with high packing density have been proposed for use in communications in Gaussian channels and also in Rayleigh fading channels in case they have high diversity.
Resumo:
Most work on supersingular potentials has focused on the study of the ground state. In this paper, a global analysis of the ground and excited states for the successive values of the orbital angular momentum of the supersingular plus quadratic potential is carried out, making use of centrifugal plus quadratic potential eigenfunction bases. First, the radially nodeless states are variationally analyzed for each value of the orbital angular momentum using the corresponding functions of the bases; the output includes the centrifugal and frequency parameters of the auxiliary potentials and their eigenfunction bases. In the second stage, these bases are used to construct the matrix representation of the Hamiltonian of the system, and from its diagonalization the energy eigenvalues and eigenvectors of the successive states are obtained. The systematics of the accuracy and convergence of the overall results are discussed with emphasis on the dependence on the intensity of the supersingular part of the potential and on the orbital angular momentum.
Resumo:
It is known that the short distance QCD contribution to the mass difference of pions is quadratic on the quark masses, and irrelevant with respect to the long distance part. It is also considered in the literature that its calculation contains infinities, which should be absorbed by the quark mass renormalization. Following a prescription by Craigie, Narison, and Riazuddin of a renormalization-group-improved perturbation theory to deal with the electromagnetic mass shift problem in QCD, we show that the short distance QCD contribution to the electroweak pion mass difference (with mu=md≠0) is finite and, of course, its value is negligible compared to other contributions.
Resumo:
One of the key issues which makes the waveletGalerkin method unsuitable for solving general electromagnetic problems is a lack of exact representations of the connection coefficients. This paper presents the mathematical formulae and computer procedures for computing some common connection coefficients. The characteristic of the present formulae and procedures is that the arbitrary point values of the connection coefficients, rather than the dyadic point values, can be determined. A numerical example is also given to demonstrate the feasibility of using the wavelet-Galerkin method to solve engineering field problems. © 2000 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)