141 resultados para Pregnancy Rate
Resumo:
In mares, the embryo migrates to the uterus between days 5 and 6 postovulation beginning its mobility through all uterine segments, which is essential for the maternal recognition of pregnancy. During the mobility phase, the embryonic vesicle shows a linear growth rate until its fixation between days 15 and 17, when the orientation phenomenon occurs. From fixation to day 28 of pregnancy, the embryonic growth is less evident (plateau) by cross-section ultrasound examination. After this period the linear growth rate is reestablished until day 46. This plateau is attributed to the increased uterine tone that compresses the vesicle and to volume expansion, making it difficult to detect the conceptus growth only by the cross-section diameter. Around day 20, the embryo proper is visualized as an echogenic spot in the ventral aspect of the vesicle. Additionally, development of allantoic sac, embryonic heartbeat, yolk sac regression and posterior umbilical cord formation also can be visualized from days 20 to 40. An intimate interaction between uterus and conceptus is essential for the normal pregnancy development. Color-and spectral-Doppler ultrasonography can be useful for the evaluation of this interface. A gradual increase on uterine vascularity during the early pregnancy and transient changes in endometrial vascularity accompanying the vesicle location during the mobility phase have been described. Around day 38 of gestation, the formation of the endometrial cups begins and, consequently, the synthesis of the equine chorionic gonadotropin (eCG) induces the formation and development of supplementary corpora lutea, which are important to secrete progesterone and to maintain pregnancy until around day 120.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study aimed at evaluating the effect of swimming before and during pregnancy on rats born with intrauterine growth restriction (IUGR) and their offspring. For this, nondiabetic and streptozotocin-induced severely diabetic (SD) pregnant rats were mated and generated offspring with appropriate (control, C) and small (IUGR) for pregnancy age, respectively. Following that, C and IUGR groups were further distributed into nonexercised control (C), exercised control (Cex), nonexercised IUGR (IUGR), and exercised IUGR (IUGRex). IUGR rats presented lower mating rate than control rats. Regardless of physical exercise IUGR rats presented decreased body weight from birth to lactation. At 90 days of life, IUGR rats presented glucose intolerance. Maternal organ weights were increased and relative adiposity of IUGRex rats was lower than Cex. IUGR and IUGRex offspring presented reduced body weight than C and Cex, respectively. IUGRex dams presented an increased rate of appropriate for pregnancy age newborns. IUGEex male and female offspring relative brain weight was increased compared with Cex. Therefore, swimming before and during pregnancy prevented glucose intolerance, reduced general adiposity, and increased maternal and offspring organ weight in rats, showing the benefit of physical exercise for IUGR rats.
Resumo:
Coordenação de Apoio de Pessoal de Nível Superior (CAPES)
Resumo:
The presence of anovulatory haemorrhagic follicles during the oestrous cycle of mares causes financial impacts, slowing conception and increasing the number of services per pregnancy. Non-steroidal anti-inflammatory drugs (NSAIDs) such as meloxicam and phenylbutazone are used in the treatment of several disorders in mares, and these drugs can impair the formation of prostaglandins (PGs) and consequently interfere with reproductive activity. This study aimed to evaluate the effects of treatment with NSAIDs on the development of pre-ovulatory follicles in mares. In total, 11 mares were studied over three consecutive oestrous cycles, and gynaecological and ultrasound examinations were performed every 12 h. When 32-mm-diameter follicles were detected, 1 mg of deslorelin was administered to induce ovulation. The first cycle was used as a control, and the mares received only a dose of deslorelin. In the subsequent cycles, in addition to receiving the same dose of deslorelin, each mare was treated with NSAIDs. In the second cycle, 4.4 mg/kg of phenylbutazone was administered, and in the third cycle, 0.6 mg/kg of meloxicam was administered once a day until ovulation or the beginning of follicular haemorrhage. All of the mares ovulated between 36 and 48 h after the induction in the control cycle. In the meloxicam cycle, 10 mares (92%) did not ovulate, while in the phenylbutazone cycle, nine mares (83%) did not ovulate. In both treatments, intrafollicular hyperechoic spots indicative of haemorrhagic follicles were observed on ultrasound. Thus, our results suggested that treatment with meloxicam and phenylbutazone at therapeutic doses induced intrafollicular haemorrhage and luteinization of anovulatory follicles.