237 resultados para POSTPRANDIAL MOTILITY
Resumo:
The epididymal sperm transit time seems to have an important role in the process of sperm maturation, and it seems that alterations to the transit can harm the process. The aim of the present work was to evaluate the influence of altered sperm transit time through the epididymis on sperm parameters and fertility of rats, as well as the role of testosterone in the alterations. Sprague-Dawley adult male rats were randomly assigned to four different groups and were treated for 12 days: (i) 10 mu g/rat/day DES, to accelerate the transit; (ii) 6.25 mg/kg/day guanethidine sulphate, to delay the transit; (iii) same treatment as group 1, plus androgen supplementation; (iv) control animals received the vehicles. Guanethidine treatment delayed the sperm transit time through the epididymal cauda, provoking increased sperm reserves in this region. Animals exposed to DES showed an acceleration of sperm transit time in the epididymis, and consequently decreased sperm density in both epididymal regions, the caput-corpus and cauda, and diminished sperm motility. In both cases sperm production was not altered. Testosterone supplementation was able to restore the transit time to values close to normality, as they were higher than in the control rats. The same occurred in relation to sperm motility. Rats exposed to DES presented lower fertility after in utero artificial insemination using sperm collected from the proximal cauda epididymis. Therefore, it was concluded that the acceleration of rat sperm transit time appeared to harm normal sperm maturation, thus decreasing sperm quality and fertility capacity, in an androgen-dependent way.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The increased metabolic rate during digestion is associated with changes in arterial acid-base parameters that are caused by gastric acid secretion (the 'alkaline tide'). Net transfer of HCl to the stomach lumen causes an increase in plasma HCO3- levels, but arterial pH does not change because of a ventilatory compensation that counters the metabolic alkalosis. It seems, therefore, that ventilation is controlled to preserve pH and not P-CO2, during the postprandial period. To investigate this possibility, we determined arterial acid-base parameters and the metabolic response to digestion in the snake Boa constrictor, where gastric acid secretion was inhibited pharmacologically by oral administration of omeprazole. The increase in oxygen consumption of omeprazole-treated snakes after ingestion of 30% of their own body mass was quantitatively similar to the response in untreated snakes, although the peak of the metabolic response occurred later (36 h versus 24 h). Untreated control animals exhibited a large increase in arterial plasma HCO3- concentration of approximately 12 mmol 1(-1), but arterial pH only increased by 0.12 pH units because of a simultaneous increase in arterial P-CO2 by about 10 mmHg. Omeprazole virtually abolished the changes in arterial pH and plasma HCO3- concentration during digestion and there was no increase in arterial P-CO2. The increased arterial P-CO2 during digestion is not caused, therefore, by the increased metabolism during digestion or a lower ventilatory responsiveness to ventilatory stimuli during a presumably relaxed state in digestion. Furthermore, the constant arterial P-CO2, in the absence of an alkaline tide, of omeprazole-treated snakes strongly suggests that pH rather than P-CO2 normally affects chemoreceptor activity and ventilatory drive.
Resumo:
Digestion affects acid-base status, because the net transfer of HCl from the blood to the stomach lumen leads to an increase in HCO3- levels in both extra- and intracellular compartments. The increase in plasma [HCO3-], the alkaline tide, is particularly pronounced in amphibians and reptiles, but is not associated with an increased arterial pH, because of a concomitant rise in arterial Pco(2) caused by a relative hypoventilation. In this study, we investigate whether the postprandial increase in Paco(2) of the toad Bufo marinus represents a compensatory response to the increased plasma [HCO3-] or a state-dependent change in the control of pulmonary ventilation. To this end, we successfully prevented the alkaline tide, by inhibiting gastric acid secretion with omeprazole, and compared the response to that of untreated toads determined in our laboratory during the same period. In addition, we used vascular infusions of bicarbonate to mimic the alkaline tide in fasting animals. Omeprazole did not affect blood gases, acid-base and haematological parameters in fasting toads, but abolished the postprandial increase in plasma [HCO3-] and the rise in arterial Pco(2) that normally peaks 48 h into the digestive period. Vascular infusion of HCO3-, that mimicked the postprandial rise in plasma [HCO3-], led to a progressive respiratory compensation of arterial pH through increased arterial Pco(2) Thus, irrespective of whether the metabolic alkalosis is caused by gastric acid secretion in response to a meal or experimental infusion of bicarbonate, arterial pH is being maintained by an increased arterial Pco(2). It seems, therefore, that the elevated Pco(2), occuring during the postprandial period, constitutes of a regulated response to maintain pH rather than a state-dependent change in ventilatory control. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The diurnal tegu lizard Tupinambis merianae exhibits a marked circadian variation in metabolism that is characterized by the significant increase in metabolism during part of the day. These increases in metabolic rate, found in the fasting animal, are absent during the first 2 d after meal ingestion but reappear subsequently, and the daily increase in metabolic rate is added to the increase in metabolic rate caused by digestion. During the first 2 d after feeding, priority is given to digestion, while on the third and following days, the metabolic demands are clearly added to each other. This response seems to be a regulated response of the animal, which becomes less active after food ingestion, rather than an inability of the respiratory system to support simultaneous demands at the beginning of digestion. The body cavity of Tupinambis is divided into two compartments by a posthepatic septum (PHS). Animals that had their PHS surgically removed showed no significant alteration in the postprandial metabolic response compared to tegus with intact PHS. The maximal metabolic increment during digestion, the relative cost of meal digestion, and the duration of the process were virtually unaffected by the removal of the PHS.
Resumo:
Digestion is associated with gastric secretion that leads to an alkalinisation of the blood, termed the alkaline tide. Numerous studies on different reptiles and amphibians show that while plasma bicarbonate concentration ([HCO3-](pl)) increases substantially during digestion, arterial pH (pHa) remains virtually unchanged, due to a concurrent rise in arterial PCO2 (PaCO2) caused by a relative hypoventilation. This has led to the suggestion that postprandial amphibians and reptiles regulate pHa rather than PaCO2.Here we characterize blood gases in the South American rattlesnake (Crotalus durissus) during digestion and following systemic infusions of NaHCO3 and HCl in fasting animals to induce a metabolic alkalosis or acidosis in fasting animals. The magnitude of these acid-base disturbances were similar in magnitude to that mediated by digestion and exercise. Plasma [HCOT] increased from 18.4+/-1.5 to 23.7+/-1.0 mmol L-1 during digestion and was accompanied by a respiratory compensation where PaCO2 increased from 13.0+/-0.7 to 19.1+/-1.4 mm Hg at 24 h. As a result, pHa decreased slightly, but were significantly below fasting levels 36 h into digestion. Infusion of NaHCO3 (7 mmol kg(-1)) resulted in a 10 mmol L-1 increase in plasma [HCO3-] within 1 h and was accompanied by a rapid elevation of pHa (from 7.58+/-0.01 to 7.78+/-0.02). PaCO2, however, did not change following HCO3- infusion, which indicates a lack of respiratory compensation. Following infusion of HCl (4 mmol kg(-1)), plasma pHa decreased by 0.07 units and [HCO3-](pl) was reduced by 4.6 mmol L-1 within the first 3 h. PaCO2, however, was not affected and there was no evidence for respiratory compensation.Our data show that digesting rattlesnakes exhibit respiratory compensations to the alkaline tide, whereas artificially induced metabolic acid-base disturbances of same magnitude remain uncompensated. It seems difficult to envision that the central and peripheral chemoreceptors would experience different stimuli during these conditions. One explanation for the different ventilatory responses could be that digestion induces a more relaxed state with low responsiveness to ventilatory stimuli. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Quatro culturas de bactérias fotossintetizantes isoladas de águas residuárias de abatedouro de aves foram identificadas como Rhodocyclus gelatinosus com base nas seguintes propriedades: desenvolvimento de cor avermelhada nos cultivos em meio sintético, motilidade positiva, morfologia de bastonetes gram-negativos ligeiramente curvos, atividade de liquefação da gelatina, utilização de citrato como fonte de carbono e produção de bacterioclorofila a e carotenóides da série espiriloxantina alternativa. Esses testes foram também aplicados para uma linhagem de Rhodocyclus gelatinosus de referência para efeito de comparação. A biomassa de R. gelatinosus pode representar uma fonte de nutrientes e de pigmentos na alimentação de aves.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este estudo teve a finalidade de fornecer dados morfológicos de ovos de D. renale e do desenvolvimento de larvas de primeiro estádio em ovos mantidos em diferentes temperaturas. Os ovos foram obtidos por centrífugação da urina de cães parasitados e colocados em placas de Petri em estufa BOD, durante 90 dias. O experimento consistiu de três tratamentos (GI - 15 ºC, GII - 20 ºC e GIII - 26 ºC) com cinco repetições cada. Os ovos apresentaram tamanho médio de 67,23 x 42,78 µm, e o tempo médio de incubação foi inversamente proporcional à temperatura de incubação e as larvas apresentaram motilidade por aproximadamente uma semana após sua formação.
Resumo:
Racional - A fundoplicatura total, procedimento empregado no tratamento da doença do refluxo gastroesofágico, pode ser realizada segundo duas técnicas de abordagem: laparotômica e laparoscópica. Objetivo - Analisar o esfíncter inferior do esôfago de coelhos submetidos a fundoplicatura total laparotômica e laparoscópica. Material e Métodos - em 40 coelhos machos foram realizados estudos eletromanométricos do esôfago segundo a técnica de puxada intermitente da sonda e infusão contínua dos cateteres com água destilada. Estes estudos permitiram a análise de dois parâmetros: amplitude da pressão no esfíncter inferior do esôfago (mm Hg) e comprimento do esfíncter inferior do esôfago em condições basais (momento 1). Os 40 animais foram divididos em quatro grupos de 10, na dependência do procedimento cirúrgico realizado: grupo 1: fundoplicatura total laparotômica; grupo 2: laparotomia mediana e dissecção da transição gastroesofágica; grupo 3: fundoplicatura total laparoscópica; grupo 4: pneumoperitônio e dissecção da transição gastroesofágica. No momento 2 (1 semana após os procedimento cirúrgicos) foram realizados estudos eletromanométricos do esôfago em todos os animais. Resultados - Nos animais do grupo 1 (fundoplicatura laparotômica) e do grupo 3, foi observado aumento da amplitude da pressão e do comprimento do esfíncter inferior do esôfago. Naqueles dos grupos 2 e 4, não foi observada alteração da amplitude e do comprimento do esfíncter inferior do esôfago. Conclusões - A fundoplicatura interfere na barreira anti-refluxo gastroesofágica, tornando-a mais eficiente, uma vez que a pressão e o comprimento do esfíncter inferior do esôfago elevam-se no pós-operatório desta intervenção. Este efeito foi observado nas duas técnicas de abordagem estudadas, laparotômica e laparoscópica.