236 resultados para Net nitrogen mineralization
Resumo:
The effect of different doses of nitrogen (N) on gas exchange, relative chlorophyll (Chl) amount, and the content of N in the aerial biomass of lisianthus was evaluated. The treatments consisted of six different concentrations of N (50, 100, 150, 200, 250, and 300 g m(-3) noted as N-50, N-100, N-150, N-200, N-250, and N-300, respectively), applied through the fertirrigation technique. N-250 and N-300 induced increase in the contents of foliar Chl and N in the aerial biomass, that in turn contributed to an increase of photosynthetic activity in lisianthus.
Resumo:
Biomass and ethanol production by industrial Saccharomyces cerevisiae strains were strongly affected by the structural complexity of the nitrogen source during fermentation in media containing galactose, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low galactose concentrations independent of nitrogen supplementation. At high sugar concentrations altered patterns of galactose utilisation were observed. Biomass accumulation and ethanol production depended on the nature of the nitrogen source and were different for baking and brewing ale and lager strains. Baking yeast showed improved galactose fermentation performance in the medium supplemented with casamino acids. High biomass production was observed with peptone and casamino acids for the ale brewing strain, however high ethanol production was observed only in the presence of casamino acids. Conversely, peptone was the nitrogen supplement that induced higher biomass and ethanol production for the lager brewing strain. Ammonium salts always induced poor yeast performance. The results with galactose differed from those obtained with glucose and maltose which indicated that supplementation with a nitrogen source in the peptide form (peptone) was more positive for yeast metabolism, suggesting that sugar catabolite repression has a central role in yeast performance in a medium containing nitrogen sources with differing levels of structural complexity.
Resumo:
The structural complexity of the nitrogen source strongly affects both biomass and ethanol production by industrial strains of Saccharomyces cerevisiae, during fermentation in media containing glucose or maltose, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low glucose and maltose concentrations independent of nitrogen supplementation. At high sugar concentrations diauxie was not easily observed. and growth and ethanol production depended on the nature of the nitrogen source. This was different for baking and brewing ale and lager yeast strains. Sugar concentration had a strong effect on the shift from oxido-fermentative to oxidative metabolism. At low sugar concentrations, biomass production was similar under both peptone and casamino acid supplementation. Under casamino acid supplementation, the time for metabolic shift increased with the glucose concentration, together with a decrease in the biomass production. This drastic effect on glucose fermentation resulted in the extinction of the second growth phase, probably due to the loss of cell viability. Ammonium salts always induced poor yeast performance. In general, supplementation with a nitrogen source in the peptide form (peptone) was more positive for yeast metabolism, inducing higher biomass and ethanol production, and preserving yeast viability, in both glucose and maltose media, for baking and brewing ale and lager yeast strains. Determination of amino acid utilization showed that most free and peptide amino acids present, in peptone and casamino acids, were utilized by the yeast, suggesting that the results described in this work were not due to a nutritional status induced by nitrogen limitation.
Resumo:
Ethylene was polymerized using a combination of Ni(diimine)Cl-2 (1) (diimine = 1,4-bis(2,6-di-isopropylphenyl)-acenaphthenediimine) and {Tp(Ms)*} TiCl3 (2) (Tp(Ms)* = hydridobis(3-mesitylpyrazol-1-yl)(5-mesityl-pyrazol-1-yl)) compounds in the presence of methyl-aluminoxane (MAO) at 30 degrees C. The productivity reaches a maximum at X-Ni = 0.75 (1400 kg of PE/mol[M] . h), and the produced polyethylene (PE) showed maximal melt flow index (0.13 g/10 min) and minimal intrinsic viscosity (2.24 dL/g) compared to polyethylenes obtained with different values of nickel loading fractions (X-Ni). Productivity intrinsic viscosity data, as well as melt flow index measurements markedly depend upon the content of the late transition metal, thus suggesting a synergic effect between nickel and titanium catalysts.
Resumo:
In this work films were produced by the plasma enhanced chemical vapor deposition (PECVD) of titanium tetraisopropoxide-oxygen-helium mixtures and irradiated with 150 keV singly-charged nitrogen ions (N(+)) at fluences, phi, between 10(14) and 10(16) cm(-2). Irradiation resulted in compaction, which reached about 40% (measured via the film thickness) at the highest fluence. Infrared reflection-absorption spectroscopy (IRRAS) revealed the presence of Ti-O bonds in all films. Both O-H and C-H groups were present in the as-deposited films, but the density of each of these decreased with increasing phi and was absent at high phi, indicating a loss of hydrogen. X-ray photoelectron spectroscopy (XPS) analyses revealed an increase in the C to Ti atomic ratio as phi increased, while the O to Ti ratio hardly altered, remaining at around 2.8. The optical gap of the films, derived from data obtained by ultraviolet-visible spectroscopy (UVS), remained at about 3.6 eV for all fluences except the highest, for which an abrupt fall to around 1.0 eV was observed. For the irradiated films, the electrical conductivity, measured using the two-point method, showed a systematic increase with increasing phi. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper evaluates emissions to the atmosphere of biologically available nitrogen compounds in a region characterized by intensive sugar cane biofuel ethanol production. Large emissions of NH(3) and NO,, as well as particulate nitrate and ammonium, occur at the harvest when the crop is burned, with the amount of nitrogen released equivalent to similar to 35% of annual fertilizer-N application. Nitrogen oxides concentrations show a positive association with fire frequency, indicating that biomass burning is a major emission source, with mean concentrations of NO, doubling in the dry season relative to the wet season. During the dry season biomass burning is a source of NH3, with other sources (wastes, soil, biogenic) predominant during the wet season. Estimated NO(2)-N, NH(3)-N, NO(3)(-)-N and NH(4)(+)-N emission fluxes from sugar cane burning in a planted area,of ca. 2.2 x 10(6) ha are 11.0, 1.1, 0.2, and 1.2 Gg N yr(-1), respectively.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study evaluates the behavior of swine effluent for their effects on soil and the quality of the leachate. In the incubation of soil with effluent were used 48 units in total with experimental application rates of 0, 50, 100 and 150 m(3). ha(-1). The soil pH and leached after the application of different rates remained acid and the values of ammonia in the argisols (Pax; Ultisol) showed minor values than in the witness soil while at the nitosols the values increased due to the application rates. The cation exchange capacity increased with greater intensity in argisols. The carbon/nitrogen relation was low showing a rapid mineralization of organic waste. The values of nitrate in leachate and the first of the phosphorus nitosol were higher than in the argisols, depending on the rate of application.
Resumo:
The Araes gold deposit, located in eastern Mato Grosso State, central Brazil, is hosted in Neoproterozoic volcanosedimentary rocks of the Paraguay belt, which formed during collision of the Amazonian craton and the Rio Apa block. Ar-40/Ar-39 geochronology and Pb and S isotopic analyses constrain the timing and sources of mineralization. Three biotite flakes from two samples of metavolcanic host rock yield Ar-40/Ar-39 plateau ages between 5941 and 531 Ma, interpreted as cooling ages following regional metamorphism. Clay minerals from a hydrothermal alteration zone yield an Ar-40/Ar-39 integrated age of 503 +/- 3 Ma. Galena grains from ore-bearing veins yield values of Pb-206/(204)pb from 17.952 to 18.383, Pb-207/Pb-204 from 15.156 to 15.811, and Pb-208/Pb-204 from 38.072 to 39.681. Pyrite grains from ore-bearing veins yield values of Pb-206/Pb-204 from 18.037 to 18.202, Pb-207/Pb-204 from 15.744 to 15.901., and Pb-208/(204)pb from 38.338 to 38.800. Pb isotope variations may be explained in terms of mixing a less radiogenic lead component (mu similar to 8.4) from mafic and ultramafic basement host-rocks (Nova Xavantina metavolcanosedimentary rocks) and a more radiogenic lead component (mu similar to 9.2) probably derived from supracrustal rocks (Cuiaba sedimentary groups). Sulfur isotope compositions are homogeneous, with delta S-34 values ranging from -1.1 parts per thousand to 0.9 parts per thousand (galena) and -0.7 parts per thousand to 0.9 parts per thousand (pyrite), suggesting a mantle-derived reservoir for the mineralizing solutions. Based on the Ar, Pb, and S isotope data, we suggest that the precious metals were remobilized from metavolcanic host rocks by hydrothermal solutions during Brasilide-Panafrican regional metamorphism. The Arabs gold deposit probably formed during a late stage of the orogeny, coeval with other mineralization events in the Paraguay Belt.
Resumo:
Forage plants, particularly the Brachiaria genus, are the main source of nutrients for cattle and are at times the only feed offered. The concentration of elements in the plant is related to the soil, fertilization, climate, season, variety, and cultural practices. An experiment on dystrophic Red-Yellow Latosol soil in Aracatuba, São Paulo was performed to evaluate the effects of the doses and sources of nitrogen fertilizers on the chemical properties of the soil and the dry matter yield of the grass Brachiaria brizantha cv. Xaraes. A randomized block design was employed involving three replicates in a 3 x 3 factorial, with three doses (100, 200 and 400 kg ha(-1) year(-1)) and three sources (Ajifer (R) L40, ammonium sulfate and urea) of nitrogen and a control treatment without nitrogen (zero). The greatest effects on the chemical properties of the soil as a function of nitrogen fertilization in the Xaraes grass were observed in the topsoil. The use of Ajifer (R) L40 and ammonium sulfate as sources of nitrogen had similar effects, with an increase in the sulfur content and a reduction in the soil pH at the superficial layer. The use of the fertilizers Ajifer (R) L40, ammonium sulfate and urea did not affect the micronutrient contents, except for Fe and Mn, and did not alter the sodium concentration or electrical conductivity of the soil. The dry matter yield of Xaraes grass was similar for all three nitrogen sources.