138 resultados para Motor control coordination


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of long duration exercise program on physical fitness components of functional capacity in individuals with Parkinson disease (PD) and to evaluate ongoing effects of exercise after 8 to 10-week follow-up without exercise. Twenty-four individuals with PD were randomly assigned to two groups: generalized exercise program and stretching exercise program (control group). The generalized exercise program provided training in physical fitness components of functional capacity. The stretching exercise program was characterized by low intensity and volume, mainly with static exercises. Both groups were evaluated before (BI) and after the 4-month (AI) exercise program. In addition, the individuals of generalized exercise program were also evaluated after 8-month exercise program and after 8 to 10- week follow-up without exercise. The generalized exercise program improved flexibility (BI - 38.50±12.42 cm; AI - 44.00±12.74 cm) and agility (BI - 30.59±7.54 s; AI - 28.56±8.20 s) while the stretching exercise program worsened coordination (BI - 23.27±6.58 s; AI - 28.06±7.37 s) and aerobic resistance (BI- 13.64±3.76 min; AI - 17.27±5.15 min) and improved balance (BI - 44.00±7.79 pts; AI - 46.57±6.53 pts). Lower-limb strength and UPDRS-motor scale scores were better at 8 months (14.75±2.92 rep and 26.25±13.97 pts, respectively) compared to baseline (13.13±2.59 rep and 31.63±12.82 pts, respectively) and 4 months (13.50±1.93 rep and 30.38±14.52 pts, respectively) for generalized exercise program. However, the benefits of 8 months of exercise were lost after 8 to 10-week follow-up without exercise (lower-limb strength - 12.43±3.15 rep and UPDRS-motor scale - 32.57±14.05 pts). In conclusion, generalized exercise program improved the functional capacity in individuals with PD, differently of stretching exercise program. In addition, a long duration exercise program promoted benefits for functional capacity and disease progression in individuals with PD. However, benefits were lost after a short period without exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to determine the effects of motor practice on visual judgments of apertures for wheelchair locomotion and the visual control of wheelchair locomotion in wheelchair users who had no prior experience. Sixteen young adults, divided into motor practice and control groups, visually judged varying apertures as passable or impassable under walking, pre-practice, and post-practice conditions. The motor practice group underwent additional motor practice in 10 blocks of five trials each, moving the wheelchair through different apertures. The relative perceptual boundary was determined based on judgment data and kinematic variables that were calculated from videos of the motor practice trials. The participants overestimated the space needed under the walking condition and underestimated it under the wheelchair conditions, independent of group. The accuracy of judgments improved from the pre-practice to post-practice condition in both groups. During motor practice, the participants adaptively modulated wheelchair locomotion, adjusting it to the apertures available. The present findings from a priori visual judgments of space and the continuous judgments that are necessary for wheelchair approach and passage through apertures appear to support the dissociation between processes of perception and action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ball and Beam system is a common didactical experiment in control laboratories that can be used to illustrate many different closed-loop control techniques. The plant itself is subjected to many nonlinear effects, which the most common comes from the relative motion between the ball and the beam. The modeling process normally uses the lagrangean formulation. However, many other nonlinear effects, such as non-viscous friction, beam flexibility, ball slip, actuator elasticity, collisions at the end of the beam, to name a few, are present. Besides that, the system is naturally unstable. In this work, we analyze a subset of these characteristics, in which the ball rolls with slipping and the friction force between the ball and the beam is non-viscous (Coulomb friction). Also, we consider collisions at the ends of the beam, the actuator consists of a (rubber made) belt attached at the free ends of the beam and connected to a DC motor. The model becomes, with those nonlinearities, a differential inclusion system. The elastic coefficients of the belt are experimentally identified, as well as the collision coefficients. The nonlinear behavior of the system is studied and a control strategy is proposed.